
Using Condensed Representations for Interactive

Association Rule Mining

Baptiste Jeudy and Jean-François Boulicaut?

Institut National des Sciences Appliquées de Lyon
Laboratoire d’Ingénierie des Systèmes d’Information

Bâtiment Blaise Pascal
F-69621 Villeurbanne cedex, France

Baptiste.Jeudy,Jean-Francois.Boulicaut@lisi.insa-lyon.fr

Abstract. Association rule mining is a popular data mining task. It has
an interactive and iterative nature, i.e., the user has to refine his min-
ing queries until he is satisfied with the discovered patterns. To support
such an interactive process, we propose to optimize sequences of queries
by means of a cache that stores information from previous queries. Un-
like related works, we use condensed representations like free and closed
itemsets for both data mining and caching. This results in a much more
efficient mining technique in highly correlated data and a much smaller
cache than in previous approaches.
Keywords association rule, inductive databases, knowledge cache.

1 Introduction

An important data mining problem is the extraction of association rules [1]. It
can be stated as follows in the context of basket analysis. The input is a trans-
actional database where each row describes a transaction, i.e., a basket of items
bought together by customers. If X is an itemset, i.e., a set of items, its frequency
in the database, denoted as Freq(X), is the number of rows/transactions where
all items of X are true/present. An association rule is a pattern X ⇒ Y where
X and Y are itemsets, its frequency is the frequency of X ∪Y and its confidence
measures the conditional probability that a customer buys items from Y know-
ing that he bought items from X . The standard association rule mining problem
concerns the computation of the frequency and confidence of all the associa-
tion rules that satisfy user-defined constraints such as syntactical constraints,
frequency and/or confidence constraints. These latter constraints are based on
the so-called objective interestingness measures and specify that the measure
(frequency, confidence) must be greater or equal to a user-defined threshold.

From the user point of view, association rule mining is an interactive and
iterative process. The user defines a query by specifying various constraints on
the rules he wants, e.g., the confidence must be more than 95% or the occurrence

? This research is part of the cInQ project (IST 2000-26469) that is partially funded
by the European Commission IST Programme - Future and Emergent Technologies.

of some items is mandatory. However, when a discovery process starts, it is
difficult to figure out the collection of constraints that leads to an interesting
result. The result of a data mining query is often unpredictable and the users
have to produce sequences of queries until he gets an actionable collection of
rules.

Computing the answer of a single association rule query is quite expensive
and has motivated many research the last 5 years. It is known that the most
expensive step for the standard association rule mining task is the computation
of the frequent itemsets, or more generally the computation of the frequency of
the interesting itemsets from which the rules will be derived. Indeed, deriving the
rules needs for the frequencies of the itemsets to be able to compute the objective
interestingness measures like confidence without any access to the raw data.
“Pushing” the user-defined constraints can speed up this computation [16, 18].
However, in highly correlated data, there are too many frequent itemsets and the
task might be intractable. In this case, the use of condensed representations w.r.t.
frequency queries [11] is useful. Several researchers have studied the efficient
computation of condensed representations of (frequent) itemsets like the closed
sets [17, 4, 20], the free sets [5] or the disjunct free sets [7].

Given a set S of pairs (X, Freq(X)), we consider that a condensed represen-
tation of S is a subset of S with two properties: (1) It is much smaller than
S and faster to compute, and (2), the whole set S can be generated from the
condensed representation with no access to the database, i.e., very efficiently.
User-defined constraints can also be used to further optimize the computation
of condensed representations [6, 10].

However these techniques optimize only one single query. To support the op-
timization of sequences of queries, we can make use of the “similarities” between
these queries that are often refinements of previous queries. It motivates the
design of algorithms that try to use the results of already computed queries.

Contribution. In this paper, we propose an algorithm to mine interactively closed
itemsets. The user defines constraints on the closed sets and can refine them in a
sequence of queries. Our algorithm uses free sets as a cache to store information
from the evaluation of previous queries. By using closed sets, our algorithm can
be used in highly correlated data where approaches based on itemsets are not
usable. Also, our cache of free itemsets is much smaller than a cache containing
itemsets and our algorithm ensures that the intersection between the union of the
results of all previous queries and the result of the new query is not recomputed.
Finally, we do not make any assumption on the relation between two queries in
the sequence, e.g., we do not require that the answer of one query is included in
the answer of another. In our experiments, we show that this algorithm actually
improves the performance of the extraction w.r.t. an algorithm that mines the
closed sets without making use of the previous computations. The speedup is
roughly equal to the relative size of the intersection between the answer to a
new query and the content of the cache. We also show that the size of our cache
is always smaller than a cache with itemsets and several orders of magnitude
smaller in highly correlated data.

Related Work. Optimizing sequences of data mining queries by caching tech-
niques has been studied for sequences [19] or association rules [9, 2, 15, 8]. How-
ever none of these works makes use of condensed representations and the problem
of the size of the stored information is not studied. In [15], experiments with dif-
ferent cache sizes are performed but no solution is given in the case of highly
correlated data, i.e., when the number of frequent itemsets explodes. Also, most
of these works require that some strong relation holds between the queries like
inclusion or equivalence. In [14], a more general problem is addressed. A query
consists of the constraints defining the subset of a relational database to be
mined and the constraints on the association rules themselves. Any of these two
sets of queries can be changed by the user. The authors show how to combine
algorithms for incremental mining (i.e., when the database changes) with algo-
rithms that only consider changes in the constraints on the association rules.
As a result, it is not necessary to consider simultaneously changes on the mined
database and on the association rule constraints. In this paper, we focus on
changes on the constraints for the closed sets and we assume that the database
does not change.

In Sect. 2, we provide some preliminary definitions and introduce the con-
densed representations based on closed sets and free sets. We propose in Sect. 3
an algorithm that computes constrained closed itemsets without a cache. It is
extended in Sect. 4 to use a cache of free itemsets. Finally, we provide an exper-
imental validation in Sect. 5 and Sect. 6 is a short conclusion.

2 Preliminary Definitions

Assume that Items is a finite set of symbols denoted by capital letters, e.g.,
Items= {A, B, C, . . .}. A transactional database is a collection of rows where each
row is a subset of Items. An itemset is a subset of Items. A row r supports an
itemset S if S ⊆ r. The support (denoted support(S)) of an itemset S is the
multi-set of all rows of the database that support S. The frequency of an itemset
S is the cardinality of support(S) and is denoted Freq(S). Figure 1 provides
an example of a transactional database and the supports and the frequencies of
some itemsets. We use a string notation for itemsets, e.g., AB for {A, B}.

Db =

r1 ABCDE

r2 AB

r3 ABD

r4 CD

Itemset Support Frequency

A {r1, r2, r3} 3
D {r1, r3, r4} 3
AD {r1, r3} 2

ABCDE {r1} 1

Fig. 1. A four rows transactional database and some itemsets

Definition 1 (Query). A constraint is a predicate from the power set of Items

to {true, false}. A query is a pair (C, Db) where Db is a transactional database

and C is a constraint. The result of a query Q = (C, Db) is defined as the set

SAT(Q) = {(S,Freq(S)), C(S) = true}.

A particular constraint is the minimal frequency constraint Cγ−freq when a
frequency threshold γ is given: Cγ−freq(S) ≡ (Freq(S) ≥ γ).

Example 1. Given the database Db defined in Fig. 1, let us consider the queries
Q1 = (C2−freq, Db) and Q2 = (C2−freq∧Cmiss, Db) where Cmiss(S) ≡ (B 6∈ S). The
answers to these queries are: SAT(Q1) = {(∅, 4), (A, 3), (B, 3), (C, 2), (D, 3), (AB, 3),
(AD, 2), (BD, 2), (CD, 2), (ABD, 2)} and SAT(Q2) = {(∅, 4), (A, 3), (C, 2), (D, 3), (AD,
2), (CD, 2)}.

A classical result is that effective safe pruning can be achieved when consid-
ering anti-monotone constraints [12, 16].

Definition 2 (Anti-monotonicity). An anti-monotone constraint is a con-

straint C such that for all itemsets S, S ′: (S′ ⊆ S ∧ C(S)) ⇒ C(S′).

The prototypical anti-monotone constraint is the frequency constraint. The
constraint Cmiss of Example 1 is another anti-monotone constraint and many
other examples can be found, e.g., in [16]. Notice that the conjunction or the
disjunction of anti-monotone constraints is anti-monotone.

2.1 Closed and Free Itemsets

The concept of closed set is classical within lattice theory and has been studied
for association rule mining since the definition of the Close algorithm in [17].
The collection of (frequent) closed itemsets is a useful condensed representation
of the (frequent) itemsets in the case of highly correlated data [4].

Definition 3 (closure, closed itemset). The closure, denoted cl(S), of an

itemset S is the largest superset of S that has the same frequency than S. A

closed itemset is an itemset S such that S = cl(S).

The closure operator has some useful properties that are straightforwardly
derived from the definition.

Proposition 1.

– S ⊆ cl(S).
– cl(cl(S)) = cl(S).
– if S ⊆ T then cl(S) ⊆ cl(T).
– Freq(S) = Freq(cl(S)).

The second item of this Prop. 1 shows that the closure of an itemset is a
closed itemset.

Definition 4 (inherited closure). The inherited closure of an itemset S is

i cl(S) =
⋃

T⊂S, |T |=|S|−1

cl(T) \ S.

The third item of Prop. 1 shows that the inherited closure of an itemset S
is actually included in the closure of S. It follows from the first item of Prop. 1
that the disjoint union of S and its inherited closure is included in its closure.
We can now define the proper closure of an itemset.

Definition 5 (proper closure). The proper closure of an itemset S is:

p cl(S) = cl(S) \ (i cl(S) ∪ S).

The following proposition holds.

Proposition 2. Let S be an itemset, the closure of S is the disjoint union of

S, i cl(S) and p cl(S).

Definition 6 (free itemset). An itemset S is free if it is not included in the

closure of any of its proper subsets.

Indeed, it is sufficient to consider only the proper subsets of size |S| − 1. Let
us illustrate these definitions on an example.

Example 2. Given the database of Fig. 1, cl(A) = AB and cl(C) = CD. Therefore
AC is free and i cl(AC) = BD. p cl(AC) = E and cl(AC) = ABCDE. The closed itemsets
are ∅, D, AB, CD, ABD and ABCDE. A condensed representation using closed sets of
the answer of the query Q1 of Example 1 is {(∅, 4), (D, 3), (AB, 3), (CD, 2), (ABD, 2)}.

There is a strong relationship between closed and free itemsets: the set of
closed itemsets is exactly the set of the closures of the free itemsets. This property
is used in the following algorithms: To compute the closed sets, the algorithms
mine the free itemsets and then output their closures. Let us note that free sets
are special cases of δ-free sets [5] and have been independently formalized as key
patterns in [3].

3 Mining Constrained Closed Itemsets

We propose an algorithm to mine closed itemsets under any anti-monotone con-
straint. This algorithm is an extension of the Close algorithm described in [17]
in which only the frequency constraint is considered.

Each itemset S is stored in a record also denoted S with four fields: S.items
is the list of the items in S, S.i cl is the inherited closure, S.p cl is the proper
closure and S.freq is the frequency of S. In the algorithm, we also use the macro
S.cl to denote S.items ∪ S.i cl ∪ S.p cl.

This is a level-wise algorithm: itemsets of size 0 are considered in the first
iteration, then those of size 1, . . . At each iteration, the set of candidate itemsets
(Cand) is filtered to remove those that do not satisfy the constraint Cam (Step 3).
Then a scan on the transactional database is performed to compute the proper
closure and the frequency of each itemset in Cand. The candidate itemsets that
are not frequent are removed (Step 5) and the closure of the frequent ones

are output (Step 6). Then, the candidates for the next iteration are computed
using the procedure cand gen. As in the Apriori algorithm [1], a candidate is
generated by joining two itemsets of size k that share the same k − 1 first items
in lexicographic order (e.g., joining ABC and ABD produces ABCD). This procedure
also initializes the inherited closure of each new candidate itemset according to
Definition 4. Finally, the new candidate itemsets that are not free are removed
(Step 8).

Algorithm 1
Input: A query Q = (Cγ−freq ∧ Cam, Db) where Cam is an anti-monotone con-
straint.
Output: O = {(cl(S), Freq(S)), S is free and Cγ−freq(S) ∧ Cam(S) is true}. By
construction, O is a condensed representation of SAT(Q)

1 Cand := {(∅, ∅, ∅, 0)}
2 while Cand 6= ∅ do
3 Cand := {S ∈ Cand, Cam(S.items) = true}
4 DB pass(Cand, Db)
5 Cand := {S ∈ Cand, S.freq ≥ γ}
6 Output({(S.cl, S.freq), S ∈ Cand})
7 Cand := cand gen(Cand)
8 Cand := {S ∈ Cand, S is free}
9 od

An advantage of this algorithm is that it makes an active use of the anti-
monotone constraint Cam to prune the search space (and not only the frequency
constraint). In previous papers [6, 10], we studied how to push monotone con-
straints (a monotone constraint is the negation of an anti-monotone one). How-
ever, dealing with sequences of queries when monotone constraints are pushed
is still under progress.

Algorithm 1 computes the free itemsets that satisfy the constraint Cγ−freq ∧
Cam and then output their closures. It is therefore possible that some of these
closures do not satisfy the constraint Cam (but they satisfy Cγ−freq by the fourth
item of Prop. 1).

Let us now give an algorithm that generates SAT(Q) from this condensed
representation.

Regeneration algorithm
Input: The output O of Alg. 1 and the constraint Cam.
Output: The answer SAT(Q) to query Q = (Cγ−freq ∧ Cam, Db).

1 I := {(S, Freq(S)), ∃C ∈ O s.t. S ⊆ C}
2 Output({(S, Freq(S)), S ∈ I and Cam(S) = true})

Details about Step 1 can be found in previous works on closed itemsets (see,
e.g., [17]) and are not provided here.

Once we know SAT(Q), it is possible to derive association rules by testing
(w.r.t. minimal confidence) the rules that can be built from the subsets of each
set S from the answer SAT(Q). Notice that an alternative would be to generate
non-redundant association rules directly from the output of Alg. 1 [20].

In this process, the expensive part is Alg. 1 and we now discuss its opti-
mization. Indeed, the computation of the answer to query Q by the regeneration
algorithm and the generation of association rules do not require further access
to the database such that they can be performed efficiently.

4 Caching Free Itemsets

Let us consider a new algorithm that stores information from previous extrac-
tions in a cache to speed up new extractions using different constraints. First,
we describe the structure of this cache and its contents.

In Alg. 1 Line 4, the proper closure and the frequency of each candidate free
itemset is computed during a database scan. If this information has been already
computed for a previous query, it would be interesting to store it and reuse it.
Therefore, we use a cache of free itemsets S with the information computed
during the database scan, i.e. p cl(S) and Freq(S) 1. The cache is simply a set
of records of the form (S.items, S.p cl, S.freq).

We require that the cache is downward closed. It means that if a free itemset
S is in the cache, then every subset of S that is free is also in the cache. This
guarantees that if a free itemset is not in the cache then none of its super-sets is
in the cache. This property is used to speed up the search of an itemset in the
cache.

This cache has been implemented using a prefix tree to store the free itemsets.
With this structure, the complexity of the search of an itemset in the cache is
proportional to the size of the itemset and not to the size of the cache.

4.1 Algorithm 2

The proof of the completeness and soundness of Alg. 2 is not provided due to
the lack of space. However, it might appear clear for a reader familiar with the
use of level-wise algorithms that compute closed itemsets.

A new boolean field S.in cache is added to the record representing each
itemset. This field is used to know if the itemset is in the cache.

The difference between Alg. 1 and Alg. 2 is that the latter uses a cache. During
Step 5, the flag S.in cache is checked for every itemset in Cand. If it is false, then
the itemset cannot be in the cache. If it is true, then the itemset is searched in
the cache. If it is found, S.freq and S.p cl are updated, else S.in cache is set to
false. In Step 6, the frequency and proper closure of the itemsets that were not
found in the cache (i.e., S.in cache = false) are computed during a database

1 It is possible to put closed sets in the cache but some computations would be needed
to generate p cl(S) and Freq(S)

scan and inserted in the new cache (Step 9). During the candidate generation
(Step 10), the field S.in cache of every new candidate is initialized with the
conjunction of T.in cache for every subset T of S such that |T | = |S| − 1. This
ensures that this field is false if and only if a subset of S is not in the cache.
Since the cache is downward closed, this would mean that S cannot be in the
cache.

Algorithm 2
Input: A query Q = (Cγ−freq ∧ Cam, Db) where Cam is an anti-monotone con-
straint and a cache C.
Output: The collection {(cl(S), Freq(S)), S is free and Cam(S) is true.} and a
new cache Cnew .

1 Cand := {(∅, ∅, ∅, 0, true)}
2 Cnew := C
3 while Cand 6= ∅ do
4 Cand := {S ∈ Cand, Cam(S.items) = true}
5 Cache pass(Cand, C)
6 DB pass2(Cand, Db)
7 Insert in Cache(Cand, Cnew)
8 Cand := {S ∈ Cand, S.freq ≥ γ}
9 Output({(S.cl, S.freq), S ∈ Cand})
10 Cand := cand gen2(Cand)
11 Cand := {S ∈ Cand, S is free}
12 od

Algorithm 2 does not make any assumption on the content of the cache
except that it is downward closed. This means that it can deals with sequences
of queries where no strict relation of inclusion holds between the queries, e.g., it
can use results from the computation of the query Q3 = (C0.1−freq, Db) to speed
up the computation of Q4 = (C0.05−freq ∧C, Db) where C(S) ≡ (S ∩AB = ∅) even
though there is no containment relation between the results of these two queries.

We can formally characterize the content of the cache. Assuming that we
already performed the extractions for queries Q1 = (C1, Db), Q2 = (C2, Db),
. . . , Qn = (Cn, Db), then the cache stores information on the frequency and the
proper closures of all free itemsets manipulated during these extractions.

In [12], it is shown that in the case of Apriori, the set of itemsets whose
frequency is computed is the set of frequent itemsets plus its negative border,
i.e., the set of minimal (w.r.t. the set inclusion) infrequent itemsets. This can be
generalized in our framework.

Proposition 3. Assuming that we already performed the extractions for queries

Q1 = (C1, Db), Q2 = (C2, Db), . . . , Qn = (Cn, Db), the cache contains the

frequencies and proper closures of the free itemsets of SAT(Q1)∪ SAT(Q2) . . .∪
SAT(Qn) plus the minimal free itemsets that do not satisfy C1 ∧ C2 . . . ∧ Cn.

This property describes which information is stored in the cache at a given
point. However, this property is not necessary for the completeness or the sound-
ness of Alg. 2 (see next subsection).

4.2 Caching Strategies

In [15], several caching strategies are presented. The strategy that we use is
similar to the No Replacement (NR) strategy of [15] (except that our cache is
stored in a prefix tree), i.e. itemsets are added in the cache and never removed.
This is motivated by the fact that our cache of free itemsets is much smaller
than a cache of itemsets and therefore less likely to become full (see Sect. 5).

In the following, we discuss how to adapt the other strategies from [15] to
our cache.

The Simple Replacement (SR) strategy uses the fact that it is more valuable
to store in the cache the itemsets with the largest frequency because they are
more likely to be used in subsequent queries. Thus, when the cache is full, the
itemsets with the smallest frequency are removed to store new itemsets. This
strategy is easily adaptable to our framework. Removing the free itemsets with
the smallest frequency from our cache does not break the downward closure
property (because the frequency is a decreasing function w.r.t. the set inclusion).
Of course, in this case, Prop. 3 no longer holds.

The Benefit Replacement (BR) strategy from [15] was pointed out as the
most efficient. The authors propose to store in the cache a gsup value for every k
such that every itemset of size k whose frequency is above gsup is guaranteed to
be in the cache. This can dramatically improve the performance if the new query
has a frequency threshold above gsup: the algorithm just has to scan the cache
to answer the query (thus saving the candidate generation steps). The main
problem of this strategy is to compute gsup. If queries with only a frequency
constraints are used, it is straightforward. With more complex queries [15] gives
no solution.

However, it is possible to extend this BR strategy. Let Q1 = (C1, Db), . . . ,
Qn = (Cn, Db) be a sequence of queries and Q = (C, Db) be the new query. If
the implication C1 ∧ . . .Cn ⇒ C holds, then it means that the answer to query Q
is in the cache and it is possible to answer it by scanning the cache once.

This strategy shows that it would be quite valuable to combine caching tech-
niques with algorithms that can find such implications in the queries.

5 Experimentations

In this section, we use a relative frequency instead of an absolute frequency: the
relative frequency is the absolute frequency divided by the number of rows in
the database.

The algorithms have been implemented in Ocaml2. All the experiments were
conducted on a PC under Linux operating system with an AMD Duron 700Mhz

2 Developed at INRIA http://caml.inria.fr/ocaml/index.html

processor and 384Mb of memory. We used two common datasets for our experi-
ments, connect-4 and mushroom from the QUEST project3. The main particu-
larity of these data sets is that they are dense and highly correlated.

In the first experiment, we study the efficiency when using the cache. When
half of the data needed by the algorithm is stored in the cache, we can expect that
the computation time is half of the computation without a cache. To evaluate
this efficiency, we performed an extraction to build a cache C with a query Q.
Then we considered n queries Q1, Q2, . . . , Qn. For each query Qi, we performed
two extractions, one using the cache C (duration dci) and another with no cache
(duration dnci). We denote ti the total number of candidates that are searched
in the cache during Step 5 of Alg. 2 and fi the number of them that are in the
cache. We define the speedup as 1−dci/dnci and the hit rate as 1−fi/ti. Figure 2
represents the hit rate versus the speedup for the two data sets mushroom and
connect-4. It shows that the cache is used efficiently and that using a cache can
bring about a significant speedup. In the mushroom data set, we can even notice
that the speedup is above the hit rate for low hit rates.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mushroom

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

connect-4

Fig. 2. The speedup versus the hit rate for the mushroom data set (left) and the
connect-4 data set (right)

Next, we made several tests to verify our claim about the fact that the
complexity of the search in the cache does not depend on the size of the cache.
For this, we built two caches C1 and C2, C1 was twenty times larger than C2.
Then we performed two extractions with a query Q such that itemsets used
by this query were present either in both caches or in none of them. The first
extraction was made using cache C1 and the second with C2. There was no
significant differences between the two extractions, showing that the size of the
cache has no significant impact on the performance.

Finally, we compared the size of our cache of free itemsets with the knowledge
cache of [15] that uses frequent itemsets (strategy NR). For each free itemset S
in our cache, we count one unit of storage for each item in S plus one unit for

3 http://www.almaden.ibm.com/cs/quest/

each item in i cl(S) plus one unit to store the frequency, thus the total size of
our cache is

∑
S∈C(|S|+ |i cl(S)|+ 1). For a cache C ′ of “classical” itemsets, we

count one unit for each item of each itemset plus one unit for the frequency, the
total size is therefore

∑
S∈C′(|S|+ 1). With these definitions, we can prove that

our cache is always smaller than a cache using itemsets. Figure 3 shows that in
practical experiments, the actual difference is up to several orders of magnitude.

1000

10000

100000

1e+06

1e+07

1e+08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

mushroom

Free itemsets Classical itemsets

1000

10000

100000

1e+06

1e+07

1e+08

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

connect-4

Free itemsets Classical itemsets

Fig. 3. Size of our cache (free sets) and the itemset cache versus the frequency threshold
in the mushroom dataset (left) and the connect-4 data set (right)

6 Conclusion

In this work, we extended the Close algorithm to deal efficiently with a sequence
of queries using anti-monotone constraints. To achieve this, we demonstrate the
added-value of condensed representations as a knowledge cache for interactive
association rule mining.

This work has two major advantages versus previous works on using caches
like [15]. First, the use of condensed representations allows mining in highly
correlated data where other techniques are not tractable. Second, using these
condensed representations leads to a cache that is orders of magnitude smaller
that a traditional cache of frequent itemsets.

This cache enables an efficient evaluation of sequences of association rule
mining queries and such a technique might be implemented, e.g., within the MINE
RULE operator [13]. Another perspective of this work is to consider conjunctions
of anti-monotone and monotone constraints and study in depth the optimizations
in that wider framework.

References

1. Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
A. Inkeri Verkamo. Fast discovery of association rules. In Advances in Knowledge

Discovery and Data Mining, pages 307–328. AAAI Press, Menlo Park, CA, 1996.

2. Elena Baralis and Giuseppe Psaila. Incremental refinement of mining queries. In
Proc. DaWaK’99, volume 1676 of LNCS, pages 173–182. Springer-Verlag, 1999.

3. Yves Bastide, Rafik Taouil, Nicolas Pasquier, Gerd Stumme, and Lotfi Lakhal.
Mining frequent patterns with counting inference. SIGKDD Explorations, 2(2):66–
75, December 2000.

4. Jean-François Boulicaut and Artur Bykowski. Frequent closures as a concise rep-
resentation for binary data mining. In Proc. PAKDD’00, volume 1805 of LNAI,
pages 62–73, Kyoto, JP, April 2000. Springer-Verlag.

5. Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Approximation
of frequency queries by means of free-sets. In Proc. PKDD’00, volume 1910 of
LNAI, pages 75–85, Lyon, F, September 2000. Springer-Verlag.

6. Jean-François Boulicaut and Baptiste Jeudy. Mining free-sets under constraints. In
Proc. IDEAS’01, pages 322–329, Grenoble, F, July 2001. IEEE Computer Society.

7. Artur Bykowski and Christophe Rigotti. A condensed representation to find fre-
quent patterns. In Proc. PODS’01, pages 267–273, Santa Barbara, California, USA,
May 2001. ACM Press.

8. Cheikh T. Diop, Arnaud Giacometti, Dominique Laurent, and Nicolas Spyratos.
Composition of mining contexts for efficient extraction of association rules. In
Proc. EDBT’02, Praha, CZ, March 2002. Springer-Verlag. To appear.

9. Bart Goethals and Jan van den Bussche. On implementing interactive association
rule mining. In Proc. DMKD’99, Philadelphia, USA, May 1999.

10. Baptiste Jeudy and Jean-François Boulicaut. Optimization of association rule
mining queries. Intelligent Data Analysis, IOS Press, 6(5), 2002. To appear.

11. Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets and condensed
representations. In Proc. SIGKDD’96, pages 189–194, Portland, USA, August
1996. AAAI Press.

12. Heikki Mannila and Hannu Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241–258, 1997.

13. Rosa Meo, Giuseppe Psaila, and Stefano Ceri. An extension of SQL for mining
association rules. Data Mining and Knowledge Discovery, 2(2):195–224, 1998.

14. Tadeusz Morzy, Marek Wojciechowski, and Maciej Zakrzewicz. Materialized data
mining views. In Proc. PKDD’00, volume 1910 of LNAI, pages 65–74, Lyon, F,
September 2000. Springer-Verlag.

15. Biswadeep Nag, Prasad M. Deshpande, and David J. DeWitt. Using a knowledge
cache for interactive discovery of association rules. In Proc. SIGKDD’99, pages
244–253. ACM Press, 1999.

16. Raymond Ng, Laks V.S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory
mining and pruning optimizations of constrained associations rules. In Proc. SIG-

MOD’98, pages 13–24, Seattle, Washington, USA, 1998. ACM Press.
17. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient mining of

association rules using closed itemset lattices. Information Systems, 24(1):25–46,
January 1999.

18. Ramakrishnan Srikant, Quoc Vu, and Rakesh Agrawal. Mining association rules
with item constraints. In Proc. SIGKDD’97, pages 67–73, Newport Beach, Cali-
fornia, USA, 1997. AAAI Press.

19. Marek Wojciechowski. Interactive constraint-based sequencial pattern mining. In
Proc. ADBIS’01, volume 2151 of LNCS, pages 169–181, Vilnius, Lithuania, Septem-
ber 2001. Springer-Verlag.

20. Mohammed Javeed Zaki. Generating non-redundant association rules. In Proc.

SIGKDD’00, pages 34–43, Boston, USA, August 2000. AAAI Press.

