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I. Overview
The past few years have seen important advances in remote 
sensing imagery. The new sensors have improved resolutions 
in all dimensions, spatial resolution with reduced pixel sizes, 
temporal resolution with shorter revisit times and spectral 
resolution with increased number of spectral bands. With 
these new specifications, new challenges have appeared. The 
huge amount of remote sensing data raises new computa-
tional issues [1] and asks for faster processing approaches. 
New applications are accessible or can achieve new results 
like change detection, natural disaster monitoring, urban and 
landscape planning, biomass measurement. Theses advances 
are especially true for Synthetic Aperture Radar (SAR) sen-
sors, with metric resolution available for civil satellite data, 
new spectral bands (L band with ALOS, X band for 
TerraSAR-X and COSMO-SkyMed), new interferometric 
potential thanks to TanDEM-X [2], reduced revisit time with 
constellations like COSMO-SkyMed. In spite of these 
improvements, SAR images remain difficult to interpret. 
New difficulties arose with the increase of spatial resolution: 
previously unnoticeable targets are now visible, bright scat-
terers are more numerous. Beyond speckle noise intrinsic to 
coherent imagery, geometric distortions due to distance sam-
pling limit our visual understanding of such images, and 
direct interpretation of an urban area imaged by a SAR sensor 
is still reserved to expert photo-interpreters. 

Together with progress made with recent sensors, new 
powerful image processing methods have emerged in the re-
cent years. Among the major advances made last decade by 
the image processing and computer vision communities, we 
have chosen to emphasize three of them for their long-term 
potential and applicative interest for SAR imaging. 

The first family of advances in signal and image processing 
is related to the progress in statistical modeling of multiplica-
tive noise, which is particularly important to deal with SAR 
imagery. Therefore, the first point we would like to mention 
is the Mellin framework proposed in [3] to deal with positive 
random variables and their multiplication. 

The second family of methods is based on the idea of 
“patches”. Patches are small image parts (typically 5 3 5 or 
7 3 7 pixels). They capture fine scale information such as 
texture, bright dots or edges. Given their very local extent, 
they are highly redundant, i.e., many similar patches can be 

found in an image. These similar patches can then be com-
bined to reduce noise [4]. But patch similarity can also be ap-
plied to stereovision or change detection. 

The third family are the “graph-cut” approaches, where 
an image processing problem is converted into the search of 
a minimum cut in a graph [5]. Efficient minimum cut algo-
rithms have been proposed for computer vision problems [6] 
and the focus is put on designing a graph to solve a given 
image processing task. Theses approaches have been mainly 
used to optimize functionals or energies derived from Markov-
ian modeling or regularization approaches. A famous model 
is the Total Variation minimization [7] which can be exactly 
minimized in one of its discrete form using a multiple layers 
graph [8], [9]. Graph-cut based approaches have also become 
very popular for many denoising and partitioning problems. 

We will see in this paper how these three theories (among 
others) have contributed to the development of efficient tools 
for SAR image processing. 

II. SAR Data Statistical Modeling
One of the main difficulties of SAR imagery is the speckle 
phenomenon. Radar are coherent imagery systems, leading to 
interferences between electromagnetic waves backscattered 
by the reflectors inside a pixel. These interferences cause a 
strong variability of radiometric values, even for a physically 
homogeneous area. In his seminal work [10], Goodman has 
derived the gray level distributions of radar images: Rayleigh 
distribution of amplitude image, Nakagami for multilooked 
data (multilook meaning that some pixels have been aver-
aged), Gamma for multilooked intensity image. However, 
these models have shown some limits when dealing with high 
resolution images. Since the beginning of SAR images, many 
distributions have been proposed to model radar data: K dis-
tribution [11], log-normal distribution, Weibull distribution, 
etc. These distributions can be well adapted to some specific 
cases. They are usually defined by some parameters that have 
to be empirically learnt on some small local areas of the 
images. The tradeoff between bias and variance of the esti-
mators requires large window sizes while keeping a homoge-
neous statistical population. 

In the past recent years, a powerful framework has been 
developed by J.-M. Nicolas to unify the set of distributions 
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and to provide efficient tools to compute parameter estima-
tors [3]. The whole theory is built on the observation that ra-
dar amplitude or intensity is intrinsically positive. Therefore, 
the Fourier transform, which is an integral over the set of all 
real values, should be replaced by some transform defined on 
positive values only. This is the case of the Mellin transform, 
which has the following form: 
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where s is a complex number, and p stands here for the ran-
dom variable distribution. Mimicking the characteristic func-
tion and all the definitions that can be derived from it, like 
moments and cumulants, a second kind characteristic func-
tion based on Mellin transform has been defined, leading to 
log-moments and log-cumulants. The Mellin convolution, 
which is the counterpart of the convolution in the positive 
value domain, provides a natural way to define the distribu-
tion of products of independent random variables (whereas 
the regular convolution deals with sum of variables). Without 
going too far into the details of this still evolving theory, we 
would like to mention what seems to us important contribu-
tions of this work. First, parameter estimation based on log-
cumulants gives low variance estimators, allowing the use of 
analysis windows of reduced sizes (figure 1). Secondly, this 
work has enlightened the relationships between the different 
distributions (Gamma, K, inverse Gamma, Weibull, log-nor-
mal,...) thanks to Mellin convolution and thanks to a diagram 

defined by the second and third log-cumulants (figure 2). 
Thirdly, the Fisher distribution has appeared as a “generic” 
distribution with 3 parameters adapted to a wide range of 
surfaces (urban areas, vegetation, etc.) [12]. 

This work has been first developed for amplitude or in-
tensity images, and has been adapted later by different au-
thors to polarimetric data. We would like to mention the work 
of Anfinsen on the extension of the use of Mellin transform 
for polarimetric data by developing the matrix-variate Mel-
lin transform framework, and exploiting it to better process 
polarimetric data [13]. 

III. SAR Data Denoising
Whereas the Mellin framework takes into account the vari-
ability of the scene within a region with a variety of 

Figure 2. The k2–k3 representation gives the positioning of the dis-

tributions in the log-cumulant space (axes are the second and third 

log-cumulant). Specific curves represent the Gamma and inverse 

Gamma distributions (in white on the bottom figures, respectively on 

the left and on the right), whereas the log-normal distributions are 

represented by the vertical axis. In this figure, two original 3-looks 

ERS data are represented on the top, on the left for a vegetation 

area, and on the right for an urban area. In the bottom, for each 

image, the local parameters are computed on 11 3 11 windows giv-

ing a point in the k2–k3 space. We can observe that for these two 

images their representations do not correspond to the same distribu-

tions. The vegetation areas are situated near the Gamma axis, 

whereas urban areas are spread in the middle part of the diagram 

corresponding to Fisher and log-normal distributions.

Figure 1. This figure illustrates the interest of the log-moment and 

log-cumulant derived from the Mellin framework. In the case of 

moment computation, the distribution is multiplied by xk before inte-

gration. This multiplication increases the importance of the tail of 

the distribution when k increases. Yet the tail can be strongly dis-

turbed by bright scatterers producing wrong parameter estimates. 

With the log-cumulant estimator, both head and tail of the distribu-

tion are taken into account, giving more robust estimates. (a) 

Moments of order 1: distribution of the amplitude pA(x) in red, of 

xpA(x) (green) and log(x)pA(x) (yellow). (b) Moments of order 2: 

distribution of the amplitude pA(x) in red, of x2pA(x) (green) and 

log(x)2pA(x) (yellow).
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 distributions seen as Mellin products, denoising approaches 
try to suppress signal-dependent speckle variability to recov-
er the scene reflectivity. 

Non-local approaches and graph-cut based optimization 
have proven to lead to very efficient denoising methods. We 
will illustrate in this section how these recent and popular im-
age processing approaches can be adapted to the case of SAR 
images. 

A. Non-Local Approaches
The first family of methods described in the introduction is 
based on patch similarity. They are known as non-local 
approaches or NL-means [4]. The main idea of non-local 
methods is to find similar patches in the image. In the case of 
image denoising, this set of similar patches is then used to 
suppress the noise, for instance by averaging the central pix-
els of each patch. 

Let us consider the Gaussian filter for comparison. Its prin-
ciple is to average spatially close pixels to suppress the noise. 
Spatially close pixels can belong to different populations, 
though. Therefore, improvements of this basic idea have been 
proposed. Instead of taking “spatially close” pixels, we can 
take “radiometrically close” pixels [4]. In this case, the prob-
lem is to select a pixel which should be “radiometrically” close 
from another pixel. And here comes the idea of patch compari-
son. A pixel can reasonably be assumed to be radiometrically 
close from another one, if their surrounding patches are similar 
(see figure 3). To denoise a pixel s, the values of pixels t are 
averaged with a weight depending on the similarity of the two 
patches surrounding s and t. This is a powerful approach since 
there is no connectivity constraint between s and t compared to 
[14], [15], and far apart patches can be considered to denoise a 
given pixel (hence the term “non-local” denoising). 

This framework has been initially developed for Gaussian 
noise: the denoising is done by averaging the noisy samples, 

and the similarity criterion is based on the Euclidean distance 
between the two patches. To adapt this framework to other 
kinds of noise while keeping the principle of patch compari-
son, Deledalle et al. have proposed a probabilistic framework 
[16]. The denoising task is expressed as a weighted maximum 
likelihood estimation, and the weight definition is established 
thanks to a probabilistic approach. Besides, this probabilistic 
framework leads to similarity weights formed by two terms, 
one related to the noisy data (likelihood similarity) and the 
other one to the denoised data (prior similarity). For this sec-
ond term, an iterative scheme has been proposed which greatly 
improves the results when strong noise is present on the data. 

This framework can be applied to any noise having a known 
distribution like Gamma or Poisson. In the case of SAR am-
plitude images, the denoising scheme is the following: 

• the denoising of pixel s can be written as: 

R̂s
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where As is the amplitude of pixel s and R̂s is the 
searched for reflectivity. 

• the weight at iteration i is computed as :
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where As,k is the amplitude of the kth pixel of the patch cen-
tered on s, h|5 h/ 12L212 , L is the number of looks, h and T 
are two parameters that can be set automatically [17], and i is 
the iteration. 

The final algorithm is thus rather simple and results are 
interesting, with preserved edges and smoothed areas as can 
be observed on figure 4. 

Other efficient denoising methods have been proposed 
in the recent years like wavelet based methods [18]–[20] or 
BM3D based approaches [21]. One of the strengths of the 
proposed probabilistic framework is that it allows the applica-
tion of non-local methods for complex data or vectorial data 
as soon as noise is well modeled by a parametric distribu-
tion. Thus, it can be used efficiently to process interferometric 
or polarimetric data using the speckle noise described by a 
zero-mean complex circular Gaussian distribution [10]. For 
instance in the case of interferometric images, weighted likeli-
hood estimators for reflectivity, interferometric phase and co-
herence are derived, and the weights measure the probability 
that the observations come from the same parameters for all 
the couples of pixels of the two patches. Figure 5 illustrates 
the potential of such approaches. Instead of computing local 
hermitian products to derive interferometric information and 
thus losing spatial resolution, such approaches can be used to 

Figure 3. The idea of non-local means is to denoise pixel s using the 

weighted value of pixel t. The weight of pixel t is computed by com-

paring the surrounding patch of s and the surrounding patch of t. 

Pixels t are considered in a search window Ws . Figure extracted 

from [16].
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Figure 4. Illustration of the NL-means SAR denoising. Figure a) on the left is a 100-looks image obtained by multi-looking a Very High 

resolution image (image acquired by ONERA, multilooked by CNES ©ONERA ©CNES). This image can be considered as a ground truth. 

Figure b) is a 1-look image of resolution 1 3 1 meter. Figure c) is the denoised version of the 1-look image b). Fine details are well pre-

served by this approach.

(a) (b) (c)

Figure 5. Illustration of NL-InSAR. (a) the original interferometric data (amplitude, phase and coherence, with 1-look). (b) the non-local 

estimation of amplitude, phase, and coherence with no loss of resolution.The weights of the likelihood estimations are computed using the 

similarity of the complex patches of the two interferometric images. Results are from [17]. 

(a)

(b)
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compute interferograms at the nominal resolution of the data. 
The case of polarimetric data is similar with the estimation 
of the underlying covariance matrix. Application of such a 
framework is described in [22]. 

Beyond the denoising application, patch similarity of am-
plitude, interferometric or polarimetric data can be very useful 
for change detection or movement monitoring. 

B. Regularization Approaches
Other powerful approaches for denoising are regularization 
based methods which have also been extensively studied in 
the past 10 years in the image processing and computer vision 
communities. The idea is to express the problem as an energy 
minimization one, the energy being divided into two terms, 
one related to the noise distribution (likelihood term) and the 
other one to the properties we expect for the solution (prior 
term). This energy can be derived for instance by a probabi-
listic approach (discrete point of view), but also from varia-
tional methods establishing a functional to minimize (con-
tinuous point of view). The likelihood term is usually linked 
to the model of noise perturbating the data. The prior term or 
regularization term usually imposes the “smoothness” of the 
solution and is expressed through interactions between neigh-
boring pixels. A popular model is a low total variation (TV 
model [7]) corresponding to almost piecewise constant image 
or equivalently to a sparse gradient (only few values of the 
gradient can be non zero). But other models like truncated 
quadratic or phi-functions can be chosen [23]. 

Beyond the difficult choice of the right model to express 
our prior knowledge on the scene, the minimization of the 
energy or functional is generally not easy. Indeed, for many 

cases, and especially for radar imagery, the neg-log-likeli-
hood is not convex. In this case, usual continuous optimiza-
tion methods similar to gradient descent can not be applied or 
risk to get stuck in a local minimum. Recent approaches of 
combinatorial optimization based on graph-cut allow for ex-
act optimization of energies composed of a convex prior term 
(like TV minimization) and a (possibly non-convex) data term 
[8], [9]. Theses approaches build a multiple layer graph, each 
layer corresponding to a possible gray level of the solution 
and search for the minimum cut in this graph. The minimum 
cut gives the exact solution of the optimization problem in the 
discrete space (spatially discrete image and discrete gray level 
set). There are two main limitations to this important result. 
The first one is the quantization of the gray levels which may 
not be easy for high dynamic images like SAR data. It can be 
solved by combining a discrete optimization step and a con-
tinuous one [24]. The second limit is the memory size. Indeed, 
the size of the graph is the size of the image multiplied by the 
number of considered gray levels and it should be stored in 
memory for the minimum cut computation. This size is pro-
hibitive for remote sensing images and block cutting is not an 
acceptable solution. Recent approaches based on multi-label 
partition moves [25] or dichotomy [26] largely reduce the 
memory cost, but loosing the optimality guarantee. 

These models can bring interesting results for SAR imag-
ery. The first application is the amplitude denoising of a radar 
image. In this case, adapted prior can be defined. In [27], the 
scene is decomposed as the sum of two terms, a component 
with low total variation representing the “background” of 
the scene in a cartoon-like model, and a sparse component 
representing the bright scatterers of the image with few non 
zero pixels. This model can be solved exactly using graph-cut 
 optimization. 

Another interesting application is the joint regularization 
of phase and amplitude of InSAR data [28]. In this case, it 
is possible to take into account the exact distribution of the 
M-look interferometric data for the likelihood term, and to 
introduce some prior knowledge preserving simultaneously 
phase and amplitude discontinuities. The phase and amplitude 
information are hopefully linked since they reflect the same 
scene. Amplitude discontinuities thus usually have the same 
location as phase discontinuities and conversely. To combine 
the discontinuities, a disjunctive max operator has been used, 
providing well preserved fine structures [28]. Figure 6 shows 
an example of 3D reconstruction using a joint regularization 
of the interferometric phase. 

These approaches can also be particularly useful for multi-
channel phase unwrapping [29]. Indeed, they provide a very 
efficient way to combine different interferometric phases in 
a multi-modal likelihood term, whereas a regularization term 
imposes to the unwrapped phase some smoothness constraints. 
It is also possible to introduce atmospheric corrections in the 
optimization scheme in an iterative way. These approaches 

Figure 6. Example of 3D reconstruction using the regularized inter-

ferometric phase with a joint prior with amplitude data, and graph-

cut optimization (from [28]). The amplitude image is superimposed 

on the computed elevation (images acquired by ONERA).
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could provide a highly flexible framework to introduce prior 
knowledge in Digital Terrain Model reconstruction in multi-
channel interferometry or in ground movement monitoring in 
differential interferometry [30]. Figure 7 illustrates the global 
combination of multi-baseline interferograms with automatic 
atmospheric corrections using an affine model of phase varia-
tion with elevation [31]. 

IV. Discussion and Conclusion
We have tried to illustrate in the previous sections how 
advanced image processing methods which have been recent-
ly developed by the computer vision community can help 
SAR image processing. We have focused on three of them, 
distribution modeling, non-local methods, regularization 
approaches with graph-cut optimization. Of course, the cited 
references are far from being exhaustive on these different 
subjects and other methods like wavelets-based methods 
would have deserved a more detailed presentation. 

Another recent and powerful theory which might well have 
a great impact in the coming years is compressive sensing [32], 
[33]. This theory has shown that, despite Shannon theory, for 
many signals only few measurements are required to allow a 
faithful reconstruction, provided the signal has a sparse rep-
resentation in a suitable space (i.e., few non-zero coefficients 
in that representation). Reconstruction of sparse signals has a 
long history in radar literature. Recent results in compressed 
sensing have fueled several works in the areas of compressed 
SAR acquisitions systems [34], SAR tomography [35] and for 
SAR GMTI data [36] to cite only a few. We refer the reader 
to the recent review [37] for more on this very active subject. 

Nevertheless, whatever the progress for low-level tasks 
such as denoising, it is unlikely that they will allow SAR im-
age understanding without high level methods. The influence 
of geometric configurations combined with distance sampling 
is predominant on the appearance of the objects in the im-
age. Therefore, a step of object recognition highlighting the 
relationship between the different signals is usually necessary 
to fully understand SAR information. Many works have been 
led in this direction like [38] for optical data, or [39], [40], 
[41] exploiting jointly SAR and optical images, or an external 
database. The object level that could be available with metric 
resolution is still difficult to reach with SAR images on their 
own. Dictionaries and learning methods could provide some 
keys for the next step of understanding. 
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Figure 7. Illustration of the regularization approaches for DTM 

reconstruction: (a) one of the interferometric phase, (b) associated 

coherence (acquired by ERS2), and (c) 3D visualization of the DTM. 

In this case, 6 interferograms with different baselines have been 

used. The regularization model is TV minimization and an iterative 

estimation of atmospheric corrections is done.
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I. Introduction
The future Earth science missions at the National Aeronautics 
and Space Administration (NASA) promise to provide an 
explosion of data and a platform for science that previously 
was unachievable using existing hardware, software, and 
assets. Instrument resolution is increasing, as is the ability of 
software and hardware to deal with data volumes that will 
easily grow to the 10–100 petabyte range in the next five 
years [1]. Over the past twenty years, NASA has invested in 
software to support all phases of the Earth science mission 
pipeline. These investments include components and archi-
tectures that support science data processing at Science 
Investigator-led Processing Systems (SIPS), data archival and 

dissemination at the Distributed Active Archive Centers 
(DAACs), and ad-hoc data analyses and custom product gen-
eration using DAAC-provided data [2]. This general flow is 
shown in Fig. 1.

For example, the Moderate Resolution Imaging Spectro-
radiometer (MODIS) Data Processing System (MODAPS) 
has evolved over time to support higher data processing 
rates and the production of data products for additional 
Earth-observing instruments by enhancing its architecture 
[3]. In addition, several recent efforts [4] to standardize pro-
cess management and control for both the Orbiting Carbon 
Observatory (OCO) missions, as well as the NPOESS Pre-
paratory Project (NPP) joint NASA–NOAA–DOD  missions, 
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