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Sub-pixellic Methods for Sidelobes Suppression and Strong
Targets Extraction in Single Look Complex SAR Images

Rémy Abergel, Loı̈c Denis, Saı̈d Ladjal and Florence Tupin

Abstract—SAR images display very high dynamic ranges. Man-made
structures (like buildings or power towers) produce echoes that are several
orders of magnitude stronger than echoes from diffusing areas (vegetated
areas) or from smooth surfaces (e.g., roads). The impulse response of
the SAR imaging system is thus clearly visible around the strongest
targets: sidelobes spread over several pixels, masking the much weaker
echoes from the background. To reduce the sidelobes of the impulse
response, images are generally spectrally apodized, trading resolution for
a reduction of the sidelobes. This apodization procedure (global or shift-
variant) introduces spatial correlations in the speckle-dominated areas
which complicates the design of estimation methods. This paper describes
strategies to cancel sidelobes around point-like targets while preserving
the spatial resolution and the statistics of speckle-dominated areas. An
irregular sampling grid is built to compensate the sub-pixel shifts and
turn cardinal sines into discrete Diracs. A statistically grounded approach
for point-like target extraction is also introduced, thereby providing a
decomposition of a single look complex image into two components: a
speckle-dominated image and the point-like targets. This decomposition
can be exploited to produce images with improved quality (full resolution
and suppressed sidelobes) suitable both for visual inspection and further
processing (multi-temporal analysis, despeckling, interferometry).

Index Terms—SAR imaging, sub-pixel target detection, apodization,
sidelobe reduction, speckle, a contrario methodology.

I. INTRODUCTION

Synthetic aperture radar (SAR) images offer insight about the
back-scattering mechanisms at hand when radar pulses are emitted
towards a scene. In particular, two different types of mechanisms
generally occur: (i) man-made structures generate multiple bounces
that lead to both very high amplitude and well-localized echoes in the
SAR images; (ii) in vegetated areas, numerous echoes are produced,
these echoes interfere, leading to a speckle phenomenon. Hence, a
typical SAR image like the one shown in Fig. 1 (a) contains rather
homogeneous areas with fluctuations due to speckle phenomenon
(the larger the average intensity in the area, the larger are these
fluctuations) and the signature of man-made structures in the form of
intensities that are several orders of magnitude larger.

Visualization of such high dynamic range images requires clipping
values above some threshold (as done to produce Fig. 1 (a)). Because
the strongest echoes are several orders of magnitude more intense
than that of the surrounding areas, the impulse response of the
complete SAR imaging system (comprised of the SAR sensor and
the digital synthesis of the SAR image) is visible. A trade-off must
then be found between resolution preservation (limited widening of
the impulse response) and attenuation of the sidelobes of the impulse
response.

Images delivered by spatial agencies underwent a Fourier apodiza-
tion process to prevent the strongest echoes to spread over several tens
of pixels in a cross shape (the typical SAR impulse response without
apodization). Beyond a resolution loss, noticeable by the reduced
ability to separate two close-by echoes, this apodization impacts
regions dominated by speckle. While, without neither apodization
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nor oversampling, fluctuations within speckle-dominated regions are
statistically independent, apodization (and over-sampling) introduces
spatial correlations in these fluctuations. Visually, these fluctuations
appear grainy, but, more importantly, these correlations impact sta-
tistical methods for speckle reduction. Almost all these methods
assume that speckle is not spatially correlated [1]. Even methods
that are relatively immune to speckle correlation (e.g., NL-SAR
[2]) behave better in the absence of these correlations. Two options
are generally considered to handle speckle correlations: (i) sub-
sampling the apodized image to reduce the spatial correlations,
and (ii) speckle whitening, by processing the unapodized (and, if
necessary, resampled at Nyquist rate) image [3], similarly as done
in image processing to denoise images suffering from correlated
noise [4]. None of these two approaches is very satisfactory: the first
approach involves a resolution loss while the second, by removing
the apodization, reinforces the impulse response sidelobes so that the
resulting image is corrupted by large cross-shaped streaks around
brightest pixels.

Sidelobes reduction in SAR imagery has been the subject of
several works. Beyond apodization (i.e., linear processing by spectral
weighting), two main approaches have been proposed to improve
images with very strong echoes such as those created by ships or
buildings: nonlinear spatially variant apodization methods and target
extraction techniques.

The aim of spatially variant apodization methods is to reduce side-
lobes without sacrificing the spatial resolution, i.e., without widening
the main lobe. Nonlinear processing methods were introduced in [5]
under the name Spatially Variant Apodization (SVA) to reach this
goal. The starting point is the observation that, by non-linearly com-
bining impulse responses from a family of spectral weighting func-
tions (e.g., cosine-on-pedestal weighting functions that include Hann
and Hamming apodizations as special cases) an improved impulse
response can be obtained. All impulse responses are maximum at the
location of the target, they then differ in terms of sidelobes amplitude
(reduced when the apodization is stronger) and main lobe width
(narrowest in the absence of apodization). By retaining at each pixel
the smallest amplitude among all amplitudes obtained by applying the
family of apodization functions, sidelobes are kept minimum while
preventing the widening of the main lobe. The choice of cosine-on-
pedestal apodization functions leads to a very efficient algorithm that
can be applied in the signal domain as a space-variant finite impulse
response filter with very compact response [5]. Several extensions of
SVA were later introduced, in particular to perform super-resolution,
see e.g. [6]. We show in this paper that, despite its attractive
computational efficiency, SVA suffers from several drawbacks: (i) it
modifies the statistics of speckle-dominated areas, (ii) point-like
targets are still spread over several pixels, (iii) a negative bias is
introduced (homogeneous regions appear to have a lower reflectivity
after SVA processing). A somewhat related method for sidelobes
reduction, also based on a filter bank, has been investigated in [7].
Rather than locally selecting the best suited apodization, spectral
super-resolution techniques (Capon [8] or APES [9]) are applied
to improve the localization of point targets. These spectral super-
resolution techniques require an estimation of the signal covariance.
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After decomposition of the original SLC image into small patches
(typically 32×32), many sub-aperture images are generated for each
patch and the covariance is estimated based on these sub-aperture
images. A super-resolved patch is then produced and the final super-
resolved image is obtained by mosaicking all processed patches. This
method is computationally expansive but produces super-resolved
images with strongly reduced sidelobes provided that the signal
covariance can be correctly estimated and inverted. However, bright
targets are not explicitly detected nor extracted, speckle-corrupted
areas appear to be affected by the process (the super-resolution
introduces strong spatial correlations), and extended targets tend to
be thinned by the super-resolution process. This method is probably
not applicable as a general-purpose sidelobe reduction step prior to
subsequent automated processing.

The second approach to sidelobe reduction is based on the de-
tection of the strongest targets in order to extract them from the
SAR image. The residual image then contains speckle-dominated
regions that can be further processed, for example by a speckle
reduction method. This is the approach followed by [10] and some
other denoising methods, see the discussion in section V.C of [1].

Target detection in SAR images is an extensively studied topic.
In particular, many works are devoted to identifying weak targets
or moving targets [11]–[15], under foliage targets [16], using po-
larimetric data [17]–[19] or interferometric data [20], [21]. In the
context of image contamination by the sidelobes of strong targets,
the difficulty does not lie in the detection of the target (since the
signal-to-noise ratio is very high), but on the necessity to perform sub-
pixel localization of the target to correctly account for the sidelobes.
Detection techniques based on CLEAN algorithm [22]–[24] and its
extension RELAX [25] are then well-adapted. They process a SAR
image iteratively, detecting an additional target at each iteration
from the residuals obtained by subtracting already detected target
signatures from the SAR image. Each time a target is found, the
amplitude and sub-pixel location of the target are estimated in the
maximum likelihood sense, i.e., such that the residuals are minimized.

Decomposition models of a SAR image into strong scatterers
and homogeneous regions have been proposed [26], [27]. These
decomposition approaches however do not take into account the
sidelobes of strong scatterers (they apply to images that are apodized).

Contributions: this paper extends the recent conference pa-
per [28] and introduces:

(i) an irregular resampling procedure that suppresses sidelobes of
strong targets; this procedure preserves the statistical properties
of speckled areas and prevents from spreading bright targets,

(ii) a criterion based on the statistical framework of a contrario
methods to detect targets in speckle, with an explicit control
over the number of false alarms in the image,

(iii) a decomposition method that can separate a SAR image into two
components: one with speckle-dominated areas, the other with
all the strong targets; these components can be further processed
in order to reduce speckle or to improve the resolution.

The paper is organized as follows. Section II describes the spectral
apodization and oversampling that are typical in single look complex
(SLC) SAR images. Section III introduces a criterion to identify the
sub-pixel translation that would suppress at best the sidelobes. This
criterion is then applied to obtain an irregular resampling scheme that
produces images with strongly reduced sidelobes. Section IV derives
a target detection method. This method leads to a decomposition
scheme into a speckle-dominated component and a target compo-
nent whose efficiency and practical interest is illustrated in several
experiments.

(a) amplitude image |u| (b) Fourier modulus |û|

Fig. 1. An example of TerraSAR-X image data. We display in (a) the
modulus of a SLC TerraSAR-X image u with size M ×N (by convention in
all this work, the horizontal axis represents the range direction), and in (b) the
modulus of its DFT û (low values are displayed in bright and high values are
displayed in dark). The Fourier spectrum (b) vanishes outside a rectangular
sub-frequency domain ω̂ with size m×n (delimited by the red dashed line),
showing that the image u is oversampled by a factor M/m in the range
direction, and by a factor N/n in the azimuth direction.

II. PSEUDO-RAW IMAGE AND PSEUDO-RAW SPECTRUM

Let u : Ω → C be a SLC discrete image with size M × N and
spatial domain Ω = IM × IN , noting IK = {0, . . . ,K − 1}. We
denote by û the discrete Fourier transform (DFT) of u, which is the
two-dimensional and (M,N)-periodic complex-valued signal defined
by

∀(α, β) ∈ Z2, û(α, β) =
∑

(k,`)∈Ω

u(k, `) e−2iπ( kαM + `β
N ) . (1)

Generally, the study of û is restricted to the period Ω̂ = ÎM × ÎN ,
noting ÎK =

[
−K

2
, K

2

)
∩ Z. The domain Ω̂ is called the canonical

frequency domain (or reciprocal grid) associated to Ω.
The SLC SAR images are, for reasons due to their acquisition

process, band-limited and well-sampled signals. This is illustrated
in Fig. 1, in which we display the modulus of a SLC TerraSAR-X
image u (Fig. 1 (a)) and the modulus of its DFT û (Fig. 1 (b)).
Indeed, the restriction of û to Ω̂ is zero-valued everywhere outside
a rectangular frequency domain ω̂ := Îm × În ⊂ Ω̂ of size m× n,
showing that the pixel spacing was adjusted during the sampling
process to (over) satisfy the Shannon-Nyquist criterion. Besides, and
as described in [29], the non-zero part of the Fourier spectrum is in
fact apodized, which means that for any (α, β) ∈ Ω̂, we have

û(α, β) =

{
û0(α, β) · γ(α, β) if (α, β) ∈ ω̂

0 otherwise,
(2)

where γ : ω̂ → R+ \ {0} is a frequency attenuating function which
depends on the data provider, and we name û0 : ω̂ → C the pseudo-
raw spectrum. The complex-valued image u0 : ω → C with spatial
domain ω := Im×In is hereafter called the pseudo-raw image. Since
the images u and u0 have different pixel sizes, the pseudo-raw image
u0 will always be compared to the subsampled image uω : ω → C
obtained by resampling u at the Nyquist frequency, i.e. the image
defined in the Fourier domain by

∀(α, β) ∈ ω̂, ûω(α, β) =
|ω|
|Ω| · û(α, β) , (3)

where |ω| = m · n and |Ω| = M · N denote the cardinality of the
sets ω and Ω.

In the particular case of TerraSAR-X [29], the apodization γ is,
up to a multiplicative factor aγ ∈ R that we introduce to ensure
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(a) apodized image uω (b) pseudo-raw image u0

oversampling of uω oversampling of u0

Fig. 2. Comparison between apodized and pseudo-raw images. On the
first row, we display the modulus of a portion of the apodized image uω
and the pseudo-raw image u0. Without apodization (pseudo-raw image u0),
the spatial resolution is higher but strong targets lead to sidelobes that mask
out the surrounding structures. The magnifications (zooming with factor ten
by Shannon interpolation) shown on the second row illustrate this trade-off
between widening of the central lobe and attenuation of the sidelobes (the
images are displayed using a common grayscale).

that both amplitude images |u0| and |uω| have the same maximum,
a 2D-separable Hamming function,

∀(α, β) ∈ ω̂, γ(α, β) = aγ · γm(α) · γn(β) , where

γK(ξ) = λ+ (1− λ) cos

(
2πξ

K

)
, and λ = 0.6 , (4)

so that the unapodized pseudo-raw spectrum û0 can be easily
recovered from the initial spectrum û by inverting (2). We refer the
reader to [3], [28] for more details about the computation of the
pseudo-raw image u0 from u (in particular in the case when the
frequency attenuating function γ is unknown).

The reason why the spatial agencies introduce an apodization is
to attenuate the sidelobes of the strong point target responses (highly
present in urban areas) which are visible due to the SAR impulse
response. Indeed, an unresolved and isotropic target with constant
reflectivity over the radar electromagnetic band can be modeled after
the synthesis of the SAR image by a 2D separable cardinal sine
whose sidelobes remain particularly visible in the vicinity of the
target center, as we observe in Fig. 2 (b). Unfortunately, the reduction
of those sidelobes using apodization also results in a degradation of
the spatial resolution (see Fig. 2 (a)) and the choice of using the
Hamming apodization (4) in the case of TerraSAR-X is presented
in [29] as a trade-off between sidelobe reduction and deterioration of
the resolution.

III. AN IRREGULAR RESAMPLING SCHEME FOR COMPLEX

PSEUDO-RAW SAR IMAGES

In this section, we complete with more details and experimen-
tal results our previous work presented in [28], and we discuss
the strengths and weaknesses of the proposed irregular resampling
scheme.

A. The cardinal sine impulse response model

In stripmap mode, the SAR imaging system (acquisition + SAR
synthesis) exhibits an approximate separability in range and azimuth,

with rectangular spectra in both dimensions. Consequently, the im-
pulse response of the system is very well approached by a two-
dimensional product of cardinal sine functions,

∀(x, y) ∈ R2, sinc(x, y) =
sin (πx)

πx
· sin (πy)

πy
, (5)

with the continuity preserving condition sin (0)
0

= 1. Notice that
in (5), the coordinates (x, y) are scaled in order to set the range and
azimuth bandwidths both equal to 2π (i.e., the horizontal and vertical
dimensions of the spectrum support represented by the red-dashed
rectangle in Fig. 1 (b)). Under this model, the continuous signal
Uc0 : R2 → C, before sampling, can be modeled as the convolution
between the continuous latent scene and the impulse response. It
follows that Uc0 is a band-limited signal which can be reconstructed
exactly (neglecting sensor noise), according to the Shannon-Whittaker
Sampling Theorem [30], [31], provided an infinite number of its
samples {Uc0 (k · δr, ` · δaz)}(k,`)∈Z2 are observed at regularly spaced
locations, with steps δr ≤ 1 along the range direction and δaz ≤ 1
along the azimuth direction. The pseudo-raw image u0 corresponds to
the finite sampling of Uc0 at the critical sampling step, δr = δaz = 1,
while the initial image u corresponds to the sampling of Uc0 using
the sub-critical steps δr = m/M < 1 and δaz = n/N < 1. In the
following, we will denote by U0 : R2 → C the Shannon interpolate
of u0 (U0 is different from Uc0 since u0 is made of only a finite
number of samples), which can be computed as U0 = Ur0 + i · U i0,
noting Ur0 and U i0 the (real-valued) Shannon interpolates of the real
and imaginary parts of u0 (see for instance Definition 2 in [32] for
the explicit interpolation formula).

In the rest of this section, we drop the double indexes for the spatial
coordinates in order to simplify the equations. The contribution to
the pseudo-raw image of an unresolved target (that is, a target with a
spatial extension that is negligible with respect to the SAR resolution)
located at sub-pixel location k0 + δ is:

∀k ∈ ω, u0(k) = A sinc(k − (k0 + δ)) + u∗0(k) , (6)

where A ∈ C denotes target’s amplitude, k0 ∈ ω, δ ∈
[
− 1

2
, 1

2

)2, and
u∗0 is the signal in the absence of the target. When δ 6= 0, the position
of the target center does not coincide with the sampling grid and for
large values of |A|, the signal u∗0 is dominated by the oscillations of
the cardinal sine function in the vicinity of k0.

A straightforward solution to this problem consists in resampling
the image u0 over a translated grid in which the coordinates of the
target center are integers, or equivalently, to translate the image u0

by the sub-pixellic translation vector t = −δ. Indeed, the translated
image is v0 : k 7→ U0(k + δ) and satisfies

∀k ∈ ω, v0(k) = U∗0 (k + δ) +

{
A if k = k0

0 otherwise,
(7)

where U∗0 denotes the Shannon interpolate of u∗0. The resampled
image v0 is not anymore polluted by the cardinal sine oscillations
present in u0, and the image v0 corresponds to a resampling of
u∗0, except at the position k = k0 where the target appears. This
phenomenon is clearly illustrated on a portion of a TerraSAR-X
image in Fig. 3, where the profiles extracted from Fig. 3 (a) and
Fig. 3 (b) both correspond to a sampling over two translated grids of
the cardinal sine function. The noticeable difference between the two
sampling grids is that the one used for the blue-dotted line contains
the target center so that all the target energy is concentrated into a
single sample and the effects of the sidelobes are suppressed.

Unfortunately, when the image u0 contains more than one target,
a global translation is in general not sufficient to accommodate all
the targets at the same time. For that reason, we introduced in [28]
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(a) pseudo-raw image (b) horizontal translation (c) 2D translation
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Fig. 3. Profile of a strong target response at the sub-pixellic scale. We
display in (a) the modulus of the pseudo-raw image in the vicinity of a strong
target and we display in (b) and (c) the modulus of the pseudo-raw image
resampled over a translated grid, with translation vector t = (0.3, 0) and
t = (0.3, 0.1) respectively, yielding more localized target support. In the
second row, the real part of a range profile of (a) is represented by the red-
dashed line, while the corresponding profile in (b) is represented by the blue-
dotted line. The actual sampling of each curve is indicated using some colored
plus and cross marks. The green plain curve represents a pure cardinal sine
function of type x 7→ Ar sinc(x−x0), for some appropriate values of x0 ∈ R
(sub-pixellic range coordinate of the target center) and Ar ∈ R (real part of
the target amplitude). Some similar profiles are observed when we consider
the imaginary part of the signal, as well as when we extend the study to the
azimuth direction (as can be verified in (c)).

an irregular resampling scheme to locally reduce the influence of the
sidelobes of the strongest targets.

B. Irregular resampling scheme

The irregular resampling scheme consists in computing from the
pseudo-raw image u0 a dense displacement field T = (Tx, Ty) :
ω →

[
− 1

2
, 1

2

]
×
[
− 1

2
, 1

2

]
, that can be used to irregularly resample

u0 into the image v0 : ω → C defined by

∀(k, `) ∈ ω , v0(k, `) = U0(k − Tx(k, `), `− Ty(k, `)) . (8)

What we expect from the local displacement T is the following.
(i) In the vicinity of a strong target, the local displacement should

cancel the effects of the sidelobes.
(ii) The cancellation of the sidelobes should be as robust as possible

to target mixing situations.
(iii) In the regions where no strong target is present, the local

displacement field should preserve the speckle statistics, so that
posterior processings (such as denoising, segmentation, etc.)
remain possible using standard methods with no modification.

The two components Tx and Ty of the displacement field T will
be computed independently, which is motivated by the separability
in range and azimuth of the system’s impulse response, but also by
the drastic reduction of the algorithmic complexity that it offers. We
recall below how the computation of the displacement field in range
Tx is done, that of Ty being totally similar (by simply exchanging
the two coordinates).

Let K ∈ N denote a locality parameter and set ∆ω = [−K,K]∩Z.
For any position (k0, `0) ∈ ω, we will compute Tx(k0, `0) using

Tx(k0, `0) = argmin
− 1

2
≤t≤ 1

2

J(U0(k0 − t+ ∆ω, `0)) , (9)

where J (defined below in (10)) is a cost function which is designed
to promote the choice of the best horizontal translation according

to (i), (ii) and (iii), and U0(k0−t+∆ω, `0) is the mono-dimensional
discrete signal of size 2K+1 obtained by restricting the 2D periodical
signal U0 : R2 → C to the discrete set (k0 − t+ ∆ω)× {`0}. The
cost function J is a variant of the discrete total variation operator,
whose role is to promote the choice of the translation yielding the
mono-dimensional discrete signal U0(k0 − t + ∆ω, `0) that is the
least oscillatory (as is the case of the blue-dotted signal in Fig. 3,
which is much less oscillatory than the red-dashed one). It is defined
by

∀v : ∆ω → C , J(v) = TVd
mask(vr) + TVd

mask(vi) ,

where TVd
mask(s) =

∑
−K≤p<K

p6∈{p0(s)−1,p0(s)}

|s(p+ 1)− s(p)| , (10)

noting vr and vi the real and imaginary parts of v, and p0(s) the
position where |s| is maximal. The resulting irregular resampling
algorithm is given in the box titled Algorithm 1.

Algorithm 1: Irregular resampling scheme proposed in [28]
Inputs: a pseudo-raw image u0 : ω → C, a locality parameter
K, a number NT of tested translations such that the set of all
candidate (horizontal or vertical) translations is
T = − 1

2
+ 1

NT
· {0, . . . , NT − 1}.

Outputs: a displacement field T = (Tx, Ty) : ω → T× T and
the irregularly resampled pseudo-raw image v0 : ω → C that
corresponds to the resampling of u0 over the irregular grid
ω − T := {(k − Tx(k, `), `− Ty(k, `), (k, `) ∈ ω}.
Initialization: precompute the horizontal and vertical
translations of u0, that is, compute for all t ∈ T,
uxt = U0(ω − (t, 0)) and uyt = U0(ω − (0, t)).
Iterations: for each (k, `) ∈ ω, compute Tx(k, `), Ty(k, `) and
v0(k, `) as follows 1

tx ← argmin
t∈T

J(uxt (k + [−K,K] ∩ Z, `))

ty ← argmin
t∈T

J(uyt (k, `+ [−K,K] ∩ Z))

T (k, `)← (tx, ty)

v0(k, `)← U0(k − tx, `− ty)

(11a)

(11b)

(11c)

(11d)

1 In (11a) and (11b), we use a periodic convention for the images uxt and uyt
when their evaluation outside of ω is needed. In (11d), the value U0(k−tx, `−
ty) can be efficiently computed by evaluating the Shannon interpolation of the
mono-dimensional signal ` 7→ uxtx (k, `) at the subpixellic position `−ty (this
operation simply involves the inner product between the mono-dimensional
discrete signal and a cardinal sine function).

First, we illustrate the performance of this resampling method
in Fig. 4, where Algorithm 1 is used to resample two pseudo-raw
images: a satellite image (TerraSAR-X in stripmap mode, copyright
DLR, LAN-1706 project acquired on the region Auvergne-Rhône-
Alpes, South of France) and an airborne image (RAMSES sensor,
ONERA). We show on this experiment that the spatial resolution is
preserved by the resampling procedure while suppressing sidelobes
that were visible in the unapodized image.

When the complex amplitude in a given resolution cell results from
the interferences from several echoes of comparable amplitude, strong
intensity fluctuations are observed in the SAR image (the so-called
speckle phenomenon [33]). If several acquisitions of the same scene
are available, the speckle can be reduced by temporal averaging (a.k.a.
multi-looking). More precisely, if {ak}1≤k≤Nlooks is a sequence of
Nlooks complex-valued images, the associated multi-look image is the
real-valued image aML = (1/Nlooks ·

∑Nlooks
k=1 |a

k|2)0.5. In Fig. 5, we
compare the multi-look image computed from an apodized sequence
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(a) TerraSAR-X pseudo-raw image irregular resampling of (a)

(b) Airborne SAR pseudo-raw image irregular resampling of (b)
copyright CNES and ONERA

Fig. 4. Irregularly resampled pseudo-raw images. Images (a) and (b)
represent the modulus of two pseudo-raw images, coming from different
remote sensing systems (respectively TerraSAR-X and RAMSES airborne
SAR system). Both images were irregularly resampled using Algorithm 1,
the modulus of the resulting images is displayed in the second column. We
observe from this experiment that irregular resampling preserves the spatial
resolution while suppressing the sidelobes surrounding bright targets.

of twenty-six TerraSAR-X images (Fig. 5 (a)) to that computed
from the corresponding sequences of pseudo-raw images (Fig. 5 (b)),
SVA-processed images (Fig. 5 (c)) and irregularly resampled images
(Fig. 5 (d)). We can see that Fig. 5 (a) suffers from a significant
resolution loss that is mainly visible as a spreading effect of strong
targets. The improved resolution of the pseudo-raw sequence is
visible in Fig. 5 (b) but strong sidelobes are visible around bright
targets, masking the structures located close by. In Fig. 5 (c), we
observe an interesting sidelobes removal but the spreading effect
of strong targets is still present and this image also suffers from
a negative bias of the gray levels (the image is darker). The proposed
irregular resampling procedure leads to a multi-look image with
preserved spatial resolution and much well-localized targets. Since no
noticeable blurring of strong targets can be observed after temporal
averaging of twenty-six images processed independently, we conclude
that the irregular resampling procedure can efficiently recenter point-
like targets by properly canceling their sub-pixel shift from the pixel
center. In addition to the image quality improvements provided by
the resampling strategy compared to the use of apodization or SVA,
this experiment shows that standard SAR image processing methods
(such as, for instance, the reduction of speckle by temporal or spatial
averaging) can be used without modification to further process the
resampled images, thanks to the preservation of the speckle statistics
offered by our resampling strategy, as we shall discuss below.

C. Advantages and drawbacks

The proposed irregular resampling strategy provides a simple and
efficient alternative to the traditional use of apodization or SVA. We
list and discuss below the advantages provided by this resampling
scheme.

(a) apodized images (b) pseudo-raw images

(c) spatially variant apodization (d) proposed resampling

Fig. 5. Temporal multi-look averages. We display in (a) the multi-look
image computed from a sequence {ukω}1≤k≤26 of twenty-six TerraSAR-
X (apodized) images. By removing the apodization to each image ukω , we
get a sequence of pseudo-raw images {uk0}1≤k≤26 whose corresponding
multi-look image is displayed in (b). Computing the multi-look images after
applying SVA on each pseudo-raw image uk0 yields image (c). By applying
Algorithm 1 to each pseudo-raw image uk0 , we obtain a sequence of irregularly
resampled images {vk0}1≤k≤26 and the corresponding multi-look image is
displayed in (d).

(i) Preservation of the resolution and sidelobes suppression : the
irregular resampling scheme applied to a pseudo-raw image
u0 boils down to a resampled image v0 which is free of the
sidelobes induced by the strong target responses while it exhibits
a spatial resolution that is similar to that of u0. The dense
displacement field T used to resample the pseudo-raw image
(see (8)) is computed in order to reduce the local oscillations of
the signal, according to a discrete total variation-based criterion.
Therefore no explicit detection of the targets is involved and
the resampling procedure reveals very robust to different target
mixing configurations, as illustrated in Fig. 4 and Fig. 5. Notice
that the irregular resampling strategy compares favorably to
SVA in terms of localization of bright targets and preservation
of the dynamic of the pixel values, as illustrated in Fig. 5.

(ii) Preservation of the statistics : one can check that the resampling
scheme preserves well the statistics of the pseudo-raw image in
areas corresponding to pure and fully developed speckle [34].
Indeed, after the resampling process, the real and imaginary
parts of the pixel values of v0 remain uncorrelated and follow a
Gaussian distribution in areas corresponding to fully developed
speckle noise, which is not the case for images processed by
SVA, as illustrated in Fig 6. Thanks to this preservation of
the statistics offered by the irregular resampling approach, the
standard SAR image processing methods can be used without
modification to further process the resampled image.

(iii) Simplicity and rapidity : the irregular resampling of a pseudo-
raw image can be achieved using Algorithm 1 which is simple
to implement and has a linear complexity with respect to
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(a) SVA processing : corr = 26% (b) irregular resampling : corr = 4%

Fig. 6. Effect of SVA and irregular resampling on the speckle statistics.
In this experiment, we computed a synthetical speckle image u0 with size
5000×5000 and reflectivity 2, that is, an image whose sequences of real and
imaginary parts pixel values {ur0(x)} and {ui0(x)} are made of i.i.d. Gaussian
variables with zero mean and unitary variance. We display the empirical
probability density function (p.d.f) of the real part of the image obtained after
processing u0 using SVA (a) or the irregular resampling scheme (b). We also
indicate the correlation between neighboring pixels in both processed images
using corr(w) = 1

‖w‖2
∑5000−2
k=0

∑5000−1
`=0 w(k+1, `) ·w(k, `), noting w

the complex conjugate of w.

the image size. More precisely, the complexities in time and
memory are O(NTK|ω|) and O(NT |ω|) respectively, after the
precomputation of NT FFTs in O(NT · |ω| log |ω|) during the
initialization step. On a standard computer, a C implemen-
tation of Algorithm 1 processes a pseudo-raw image of size
|ω| = 1000 × 1000 in less than two minutes using the typical
setting NT = 20 and K = 25.

While apodization introduces undesirable correlations of the
speckle and deteriorates the spatial resolution, the irregular resam-
pling scheme provides an image with better resolution and uncor-
related speckle, which is suitable both for visualization and further
processing. This resampling strategy also presents some limitations
that we shall discuss now and that suggest the development of a
method based on the extraction of bright targets, as proposed in
section IV.

(i) Non-invertibility of the procedure: from the resampled image,
even given the resampling grid, it is very computationally
intensive and numerically unstable to reconstruct the original
pseudo-raw data.

(ii) Re-appearance of the targets sidelobes: ideally, resampling a
pseudo-raw image u0 into v0 using Algorithm 1 changes the
oscillatory cardinal sine target profiles of u0 (like the red-dashed
line in Fig. 3) into discrete Diracs (like the blue-dotted line in
Fig. 3). Unfortunately, if we need to manipulate at the sub-
pixellic scale the resampled image v0 for further processing,
for instance for registration purpose, or simply if we try to
oversample v0 in order to retrieve the same pixel size as the
initial image (recall the presence of zero-padding in Fig. 1),
those discrete Diracs are interpolated as cardinal sines and we
observe the re-appearance of their sidelobes, as in Fig. 7. This
inability to manipulate the irregularly resampled image v0 at
the sub-pixellic scale restricts its potential use in image analysis
algorithms requiring sub-pixellic precision.

(iii) Deterioration of the interferometric phase: when two (spatially
registered) looks of the same scene are available, we are usually
interested in computing the difference of their phases, since it is
related to the elevation and motion of the scene. Unfortunately,
irregularly resampling the two images independently introduces
some decoherences between the images, and their interferomet-
ric phase is not well preserved by this procedure as we shall
see in the next section.

In summary, irregularly resampling pseudo-raw images in order
to minimize the sidelobes effects of their neighboring bright targets
leads to images that are at the same time of high resolution, statisti-

pseudo-raw image u0 irregularly resampled image v0

oversampling of v0 (Shannon) oversampling of v0 (bicubic spline)

Fig. 7. Re-appearance of the targets sidelobes at the sub-pixellic
scale. Thanks to the irregular resampling procedure, the targets induced
cardinal sines present in the pseudo-raw image are changed into discrete
Diracs in v0. Therefore, the targets sidelobes present in u0 are canceled in
v0. Unfortunately, we observe a re-appearance of the sidelobes when we
oversample v0 using the Shannon interpolation (see bottom-left image). Even
when using a more local interpolation method to oversample v0, such as
bicubic splines (see bottom-right image), the sidelobes re-appear in the vicinity
of the strong targets.

cally accurate, and well-suited for visual interpretation. However, this
strategy performs poorly in terms of fidelity to the data, preservation
of the interferometric phase, and leads to images that are not better
suited than the initial pseudo-raw image for further processings
requiring a sub-pixellic precision.

IV. SPECKLE PLUS TARGETS DECOMPOSITION: A REVISITED

CLEAN APPROACH

In this section we explore the possibility to compute a decompo-
sition of the image into two parts, one containing the bright targets
(described by their sub-pixellic positions and complex amplitudes)
and another one containing the image that would have been observed
without the bright targets. This approach is not new and the most
successful algorithm in that direction is the RELAX algorithm [25],
which is an extension of the CLEAN algorithm that was first proposed
in radio astronomy [22] before being used in microwave imaging [23].
The CLEAN approach consists in extracting one target at a time. The
pixel with the brightest amplitude in the image is assumed to contain
a target. The sub-pixellic position of the target is computed using
maximum correlation (other criteria are possible). Once this sub-
pixellic position is computed, the complex amplitude of the target is
estimated using a least-square criterion. Then, the target is subtracted
from the image and the algorithm is run again on the residual image.
The RELAX approach is similar, except that each time a target
is extracted from the data, the sub-pixellic positions and complex
intensities of all previously detected targets are refitted according
to a least-square criterion. These two algorithms can be viewed as
matching pursuit algorithms, the dictionary being the infinite set of
cardinal sines located at each possible point. Under that viewpoint,
the CLEAN algorithm corresponds to the mere matching pursuit [37]
while the RELAX algorithm is closer to the orthogonal matching
pursuit [38].

In terms of performances, the CLEAN approach is not well suited
for detecting multiple targets located near to each other, because it
lacks a joint estimation of the sub-pixel locations of nearby targets.
On the other hand, the RELAX approach is computationally intensive
when the number of targets increases, since it requires to solve a
sequence of non linear least squares problems with an increasing
number of unknowns. This can be seen as a result of the high
cardinality of the dictionary used in this orthogonal matching pursuit
procedure. Is is important to note that both the CLEAN and RELAX
approaches share the same weakness, they do not rely on a precise
target detection criterion to decide whether a pixel of the image



SUB-PIXELLIC METHODS FOR SIDELOBES SUPPRESSION AND STRONG TARGETS EXTRACTION IN SINGLE LOOK COMPLEX SAR IMAGES 7

contains a strong target or not and the whole process does not rely
on a satisfactory stopping criterion. Indeed, at each iteration, both
algorithms assume that the pixel of the image with the brightest am-
plitude contains a target, the extraction process stops when the highest
amplitude of the image falls below a given amplitude threshold, or
after a given number of targets has been extracted from the image. In
practice, the observed scene may exhibit a wide range of reflectivity
values and we may observe numerous isolated bright targets whose
amplitudes are large compared to the reflectivity of their surrounding
areas (good signal-to-noise ratio), while being smaller or comparable
to the amplitude of pure speckle in other areas. We illustrate this
phenomenon on an airborne SAR image in Fig 8. A region delimited
by a rectangle is magnified by Shannon interpolation. It contains a
target with an amplitude A0 that is more than ten times larger than
that of the pixels in the surrounding area. The sidelobes of this target
are thus visible, especially after reinterpolation. This target should
thus be detected as such, even though the amplitude A0 is below that
of speckled areas with stronger reflectivity. The right part of Fig. 8
shows in red all pixels with an amplitude larger than A0. Several
pixels in the vegetated areas located at the left-hand side of the
outlined target are marked in red as larger than A0. More generally,
numerous pixels marked in red do not exhibit a significantly larger
amplitude than their surrounding neighbors and correspond to pure
speckle (see the right-top side of the image). Consequently, a target
extraction method with a stopping criterion based on the amplitude
of the target, like CLEAN or RELAX, would either fail to detect the
outlined target, or produce numerous false detections in pure speckle
noise. The above mentioned limitation of CLEAN and RELAX can
be addressed by using an explicit target detector in the extraction
procedure.

Numerous approaches for target detection have been proposed in
the literature (see e.g., [39], [40]). One of the most popular [41] is
based on the generalized likelihood ratio test. The authors propose
to detect various structures through the use of specially crafted
masks (cross-shaped in the specific case of target detection) and
the comparison of the mean intensity in the mask compared to a
surrounding counterpart (cross excluded), using a so-called variation
coefficient. However, variation coefficients are strongly dependent
from the sampling since, as we showed earlier, the shape of a strong
target may completely change according to the sampling grid. Taking
this into account leads the authors to make a conservative choice
yielding a sure detection at the cost of under-detection of less-brighter
targets. This problem has lead to a multitude of CFAR type detectors
like CA-CFAR, OS-CFAR, GO-CFAR and SO-CFAR, each of which
being more effective in certain situations (multiple targets, targets in
the vicinity of an edge, etc). In turn, some authors proposed a strategy
to determine which of these detectors would be the more effective at
any location of the image (see [39], [42]). We believe that resampling
the image at sub-pixel scale is a necessary step for any method that
seeks simplicity and to be the most generic. This is also supported
by the success of our resampling scheme presented in Section III that
proved efficient enough to suppress the sidelobes while being very
simple.

In the rest of this section, we design a revisited CLEAN procedure
that can be used to decompose the pseudo-raw image into a speckle-
dominated component and a set of targets. Our revisited CLEAN
procedure relies on an efficient sub-pixellic target detection criterion
based on the so-called a contrario methodology [43], which leads
to a well justified stopping criterion and an accurate control of the
false alarms. This a contrario target detection criterion is presented
in Section IV-A and the revisited CLEAN procedure is described and
validated through synthetic and real-life experiments in Section IV-B.
Last, several interesting applications of the decomposition provided

Airborne SAR pseudo-raw image, with a saturation (in red) of the pixels with
focus on a target with amplitude A0 amplitude higher than A0

Fig. 8. Example of a bright target with an amplitude below the level
of the speckle in high-reflectivity areas. (left) Airborne pseudo-raw image
(copyright CNES and ONERA) with a zoom on a small region that contains a
target of amplitude A0; (right) pixels with an amplitude greater or equal to
A0 are marked in red. Setting the global amplitude threshold of CLEAN or
RELAX smaller than A0 would result in numerous target extractions in areas
marked in red, including pure speckle noise.

by the revisited CLEAN algorithm are proposed in Section IV-C.

A. A contrario detection of bright targets centers

The a contrario methodology is a mathematical framework ded-
icated to the design of detectors providing a rigorous control of
the number of false detections, that is, the average number of
detections allowed in pure noise data. This methodology was first
proposed in [44] for the detection of alignments in images, and
then applied to many different tasks, such as estimation of the
modes of a histogram [45], detection of shape elements [46], of
vanishing points [47], contrasted edges [48], or line segments [49].
In remote sensing, it has been applied to the detection of sub-
pixellic changes in satellite imagery [50] and feature matching in
SAR imaging [51]. The a contrario framework can be viewed as a
mathematical formulation of a visual perception principle, the so-
called Helmholtz principle, that was first formulated in the context of
image analysis by Lowe in [52]. This principle states that the human
perceptual system perceives structures that are unlikely to appear
by chance in a random configuration. In practice, the mathematical
formulation of this principle relies on two main ingredients: a naive
model (noted H0) that describes what would be pure random data,
and a measurement function that characterizes the type of structures
looked for. Given those two ingredients, the a contrario methodology
can be applied to design a Number of False Alarms (NFA), which
is a real-valued function that groups the structure according to their
average number of appearances in H0. More precisely, the NFA is
designed in such a way that, in pure random data H0, the expectation
of the number of structures having a NFA smaller than ε is less
than ε. In practice, we detect the structures having a NFA smaller
than a given threshold ε, those structures are said detectable at the
level ε, or ε-meaningful, and this threshold parameter ε has a handy
meaning for the user since it simply represents an upper bound of the
average number of (false) detections allowed in pure noise H0 (this
result is formalized as the so-called NFA-property). The traditional
setting ε = 1 is often used to ensure that, in average, less than one
detection is achieved in pure noise data. Compared to the classical
statistical decision theory, the a contrario framework presents the
advantage to get rid of the design of a H1 hypothesis, making the
a contrario algorithm less sensitive to the modeling choice for the
structures that we want to detect. Besides, this methodology yields
algorithms having the NFA threshold ε as the unique parameter,
and the setting of this parameter is particularly simple thanks to
the tangible interpretation of ε offered by the NFA-property. We
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refer to [43] for a much more detailed presentation of the a contrario
framework.

In the following, we propose to apply the a contrario methodology
to the problem of the detection of strong targets in pseudo-raw
images. First, we define the H0 model that describes the data when
no target is to be detected.

Definition 1 (H0 model). A random pseudo-raw image u0 : ω → C
follows the H0 model (u0 ∼ H0) if the sequences of its real
and imaginary parts {ur0(k, `)}(k,`)∈ω and {ui0(k, `)}(k,`)∈ω are
independent and identically distributed according to a standard
normal distribution N (0, 1).

The H0 model defined above corresponds to the case where u0 is
a pure speckle with a reflectivity equal to 2. The choice of the unitary
variances in Definition 1 is arbitrary and will have no incidence in
the design of the NFA since the measurements that we are going to
perform in H0 are independent from this choice.

Now, let us focus on the design of the measurement function that
will be used in a probabilistic framework to compute the amount
of surprise associated with the observation of a bright target in
H0. Our underlying idea is very simple. A bright target is roughly
characterized by the fact that its amplitude is large compared to
the reflectivity of its surrounding area. Unfortunately, due to the
sampling, the total amplitude of the target can be smeared in the
vicinity of its center (this is the sidelobe effect) which makes difficult
the estimation of the reflectivity of its surrounding area. However,
this difficulty can be easily overcome as we explained in Section III
how to compute the local displacement field T = (Tx, Ty) :
ω → [− 1

2
, 1

2
]× [− 1

2
, 1

2
] that best reduces the sidelobes. Indeed,

if the pixel (k0, `0) of u0 contains the center of a strong target,
then, the sub-pixellic position of the target center should be well
approximated by (k0 − Tx(k0, `0), `0 − Ty(k0, `0)). Therefore, the
translated signal (k, `) 7→ U0(k− Tx(k0, `0), `− Ty(k0, `0)) should
behave as a discrete Dirac in the vicinity of (k0, `0), so that we are
able to efficiently compare the target amplitude to the reflectivity
of its surrounding area. Based on this idea, we propose again to
process the range and azimuth directions independently in order to
reduce the computational costs by keeping all computations in the
mono-dimensional case and avoiding the computation of all two-
dimensional translations with vector (tx, ty) ∈ T×T. Besides, since
we are only interested in the detection of the target centers, we can
avoid the systematic computation of the local maxima p0(s) involved
in (10), and assume that p0(s) = 0 which is also interesting (although
not mandatory) in terms of reduction of the computational costs. This
slight modification of the TVd

mask score (10) used in Algorithm 1
will be systematically assumed in the rest of this section.

Given a pseudo-raw image u0 : ω → C, we compute the associated
displacement field T using Algorithm 1 with a given choice of K
and NT (we took K = 25 and NT = 20 in all ours experiments).
Let ∆ω∗ = [−K,K] ∩ Z \ {0} define a local neighborhood. First,
we focus on the horizontal direction. For all (k, `) ∈ ω, we define
the quantity

Ru0
x (k, `) =

√
Ur0 (k − Tx(k, `), `)2

σ̂rx(k, `)2
+
U i0(k − Tx(k, `), `)2

σ̂ ix (k, `)2
,

where σ̂rx(k, `)2 = 1
2K

∑
k′∈∆ω∗ U

r
0 (k − Tx(k, `) + k′, `)2 is an

empirical estimation of the variance of the horizontally translated
signal (k, `) 7→ Ur0 (k − Tx(k, `), `) over the set (k + ∆ω∗) × {`},
and σ̂ ix (k, `)2 is defined in the same way, simply by replacing the Ur0
by U i0 in the definition of σ̂rx(k, `)2. Again, if the image u0 contains
a bright target with a center located within the pixel (k0, `0), the
resampled signal k 7→ U0(k − Tx(k0, `0), `0) should behave as a

discrete Dirac in the horizontal vicinity of (k0, `0). Thus, the quantity
Ru0
x (k0, `0) should efficiently measure the ratio between the target

amplitude and the local reflectivity. Similarly, in the vertical direction,
we set for all (k, `) ∈ ω,

Ru0
y (k, `) =

√
Ur0 (k, `− Ty(k, `))2

σ̂ry(k, `)2
+
U i0(k, `− Ty(k, `))2

σ̂ iy (k, `)2
,

where σ̂ry(k, `)2 = 1
2K

∑
`′∈∆ω∗ U

r
0 (k, ` − Ty(k, `) + `′)2 denotes

this time an empirical estimation of the variance of the vertically
translated signal (k, `) 7→ Ur0 (k, ` − Ty(k, `)) over the set {k} ×
(`+ ∆ω∗), and again, σ̂iy(k, `)2 is obtained by replacing Ur0 by U i0
in the above definition of σ̂ry(k, `)2. As measurement function for our
a contrario model, we propose to compute, for all pseudo-raw image
u0 : ω → C, and all position (k, `) ∈ ω, the quantity Ru0(k, `)
defined by

Ru0(k, `) = max
(
Ru0
x (k, `), Ru0

y (k, `)
)
. (12)

For the sake of completeness, the computation of (12) is explicitly
described in Algorithm 2.

Algorithm 2: computation of the measurement function (12)
Inputs: a pseudo-raw image u0 : ω → C, two parameters K
and NT exactly as in Algorithm 1.
Outputs: Ru0

x , Ru0
y and Ru0 defined in (12)

Initialization:
(i) precompute {uxt }t∈T and {uyt }t∈T, the horizontal and

vertical translations of u0, as in Algorithm 1
(ii) for any real-valued mono-dimensional signal s with size

2K, set Var(s) = ‖s‖2/2K, noting ‖ · ‖ the Euclidean
`2 norm.

Iterations: for each (k, `) ∈ ω, do 2

tx ← argmint∈T J(uxt (k + [−K,K] ∩ Z, `))
ty ← argmint∈T J(uyt (k, `+ [−K,K] ∩ Z))

V̂ rx ← Var(Re(uxtx(k + [−K,K] ∩ Z \ {0}, `)))
V̂ ix ← Var(Im(uxtx(k + [−K,K] ∩ Z \ {0}, `)))
V̂ ry ← Var(Re(uyty (k, `+ [−K,K] ∩ Z \ {0})))

V̂ iy ← Var(Im(uyty (k, `+ [−K,K] ∩ Z \ {0})))

rx ←
(

Re(uxtx(k, `))2/V̂ rx + Im(uxtx(k, `))2/V̂ ix

)1/2

ry ←
(

Re(uyty (k, `))2/V̂ ry + Im(uyty (k, `))2/V̂ iy

)1/2

(
Ru0
x (k, `), Ru0

y (k, `)
)
← (rx, ry)

Ru0(k, `)← max (rx, ry)

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

(13g)

(13h)

(13i)

(13j)

2 We denote by Re and Im the real and imaginary part operators. Notice
that in (13a)-(13f), a periodic convention is used for the images uxt and uyt
when their evaluation outside of ω is needed. Optional: in (13a) and (13b) we
can force p0(s) = 0 in the definition of J (Eq. (10)) in order to save some
computational time. All our experiments take into account this modification.

By construction, the measurement function Ru0 should take large
values at pixels (k0, `0) ∈ ω when a strong target is present in u0 at
the sub-pixellic position (k0−Tx(k0, `0), `0−Ty(k0, `0)). However,
instead of thresholding the measurements {Ru0(k, `)}(k,`)∈ω using
an arbitrary threshold to decide for each pixel whether a target
is present or not, the a contrario methodology suggests evaluating
the amount of surprise associated with the observation in H0 (that
is, when u0 is a realization of u0 ∼ H0) of the measurements
{Ru0(k, `)}(k,`)∈ω . The evaluation of such amount of surprise can
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be done using the complementary cumulative distribution functions
Fk,` defined by

∀(k, `) ∈ ω , ∀r > 0 , Fk,`(r) = PH0(Ru0(k, `) ≥ r) . (14)

In order to evaluate the cumulative distribution functions
{Fk,`}(k,`)∈ω in the case u0 ∼ H0, let us focus on the distribution
of the random variables {Ru0

x (k, `)}(k,`)∈ω and {Ru0
y (k, `)}(k,`)∈ω .

In the simple case where we force the translation map to be constant
over ω and the locality parameter K to be large, the distribution
of the random variables Ru0

x (k, `) and Ru0
y (k, `) is very well

approached by a Rayleigh distribution, with a parameter σ = 1
(since both quantities Ru0

x (k, `) and Ru0
y (k, `) can be viewed as

the `2 norm of a two-dimensional Student vector with 2K degrees
of freedom). When the displacement field T is computed using
Algorithm 1 over a random pseudo-raw image u0 ∼ H0, we
observed that the distribution of Ru0

x (k, `) and Ru0
y (k, `) remained

well approached by a Rayleigh distribution, with a parameter
σ(K,NT ) that depends of the choice of K and NT used in
Algorithm 1. This observation is illustrated in Fig. 9, where we
can see that the Rayleigh approximation seems even more accurate
for large values of K, as can be observed by comparing Fig. 9 (a)
to Fig. 9 (b) or Fig. 9 (c) to Fig. 9 (d). In particular, the choice
K = 25 leads to the empirical distributions displayed in Fig. 9 (b)
and Fig. 9 (d) that are well approximated by a Rayleigh distribution,
although they exhibit a slightly heavier tail than that of the actual
Rayleigh distribution. This leads us to formulate the following
assumption, on which our NFA-property relies.

Assumption 1. If u0 follows the H0 model, then the sequences
{Ru0

x (k, `)}(k,`)∈ω and {Ru0
y (k, `)}(k,`)∈ω are made of ran-

dom variables that follow a Rayleigh distribution with parameter
σ(K,NT ) that depends on the values of K and NT used in
Algorithm 1 to compute the displacement field T .

Proposition 1 (NFA-property). Under Assumption 1, the real-valued
function NFA : R+ → R+ defined by

∀r ≥ 0 , NFA(r) = 2 · |ω| · e
− r2

2σ(K,NT )2 (15)

is a Number of False Alarms for the sequence of random mea-
surements {Ru0(k, `)}(k,`)∈ω in the sense that it satisfies the NFA-
property, that is, for all ε > 0,

Eu0∼H0

[
#{(k, `) ∈ ω, NFA(Ru0(k, `)) ≤ ε}

]
≤ ε , (16)

where #A denotes the cardinality of the set A.

Proof. Under Assumption 1, all measurements {Ru0
x (k, `)}(k,`)∈ω

and {Ru0
y (k, `)}(k,`)∈ω follow a Rayleigh distribution with parame-

ter σ(K,NT ). Therefore, the complementary cumulative distribution
functions Fk,` can be bounded from above using

∀r > 0 , ∀(k, `) ∈ ω , Fk,`(r) ≤ G(r) := 2 · e
− r2

2σ(k,NT )2 , (17)

simply because we have the relation

Fk,`(r) ≤ PH0(Ru0
x (k, `) ≥ r) + PH0(Ru0

y (k, `) ≥ r) ,

and PH0(Ru0
x (k, `) ≥ r) = PH0(Ru0

y (k, `) ≥ r) = e
− r2

2σ(k,NT )2 .
Thus, the NFA-property (16) follows as a direct consequence of [53,
Proposition 2]. However, let us finish this proof with a reformu-
lation of this result for the sake of completeness. Let ε > 0,
let E = Eu0∼H0

[
#{(k, `) ∈ ω, NFA(Ru0(k, `)) ≤ ε}

]
, and for

(a) K=10 and NT=3 (b) K=25 and NT=3

(c) K=10 and NT=20 (d) K=25 and NT=20

Fig. 9. Distribution of {Ru0
x (k, `)}(k,`)∈ω in H0. Each graph represents

the empirical histogram of the sequence {Ru0
x (k, `)}(k,`)∈ω (whose values

are represented along the horizontal axis) computed from a 5000 × 5000-
sized sample u0 of u0 ∼ H0 using different settings of the param-
eters K and NT in Algorithm 2. We can see that those histograms
can be well fitted by some Rayleigh probability density functions of the
type x 7→ (x/σ2) exp (−x2/(2σ2)) whose parameter σ, estimated from
{Ru0

x (k, `)}(k,`)∈ω using a maximum likelihood approach, depends on
the setting of (K,NT ). The same observations hold for the sequence
{Ru0

y (k, `)}(k,`)∈ω . Therefore, we can consider that Assumption 1 is
approximately satisfied, although not rigorously exact.

each (k, `) ∈ ω, let us denote by 1NFA(Ru0 (k,`))≤ε the random
variable defined by

1NFA(Ru0 (k,`))≤ε =

{
1 if NFA(Ru0(k, `)) ≤ ε
0 otherwise.

We have

E = Eu0∼H0

[∑
(k,`)∈ω 1NFA(Ru0 (k,`))≤ε

]
=

∑
(k,`)∈ω

PH0 (NFA(Ru0(k, `) ≤ ε)

=
∑

(k,`)∈ω

PH0 (G(Ru0(k, `)) ≤ ε/|ω|)

≤
∑

(k,`)∈ω

PH0 (Fk,`(R
u0(k, `)) ≤ ε/|ω|) ,

where the inequality is due to the relation (17). Besides, thanks to
the p-value property (see [53, Lemma 1]), we have the upper-bound
PH0 (Fk,`(R

u0(k, `)) ≤ ε/|ω|) ≤ ε/|ω|, from which follows the
inequality E ≤

∑
(k,`)∈ω ε/|ω| ≤ ε announced in Proposition 1.

In practice, we can compute the NFA defined in (15) provided
we replace the σ(K,NT ) by an estimation σ̂(K,NT ) obtained from
the computation of Ru0

x and Ru0
y over a sample u0 of u0 ∼ H0,

this boils down to Algorithm 3 which can be used to evaluate
the function (k, `) 7→ NFA(Ru0(k, `)) given any image u0 with
domain ω. Under this framework, the center of a strong target is
detected at the level ε inside the pixel (k, `) of the image u0 if
and only if we have NFA(Ru0(k, `)) ≤ ε, so that the detection of
the target centers can be efficiently done by thresholding the NFA-
map computed using Algorithm 3. The actual control of the average
number of false detections (made in pure random data following H0)
predicted by Proposition 1 is tested in Fig. 10. In this experiment,
we study the effective control of the average number of (false)
detections made in pure random data H0. For that purpose, we
computed over one thousand samples u0 of u0 ∼ H0 (with domain
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Fig. 10. Control of the average number of detections in pure H0 data.
We display, using two curves (each curve represents a particular choice of the
parameters K and NT used in Algorithm 3), the evolution of the ratio between
the average number of detections made in a pure speckle noise following H0

and ε, as a function of ε.

ω of size 1000 × 1000) the average number of detections made
at the level ε (that is, the average number of positions (k, `) such
that NFA(Ru0(k, `)) ≤ ε), for various values of ε. According to
Proposition 1, this average number of detections should be less than ε,
whatever the value of ε. In practice, we observe that it can be slightly
higher, which is due to the imperfect approximation of the distribution
of the random variables {Ru0(k, `)}(k,`)∈ω by a Rayleigh function
(in particular for small values of K). Since Assumption 1 is not fully
satisfied, the number of false detections is not rigorously controlled.
However, since the number of detections remains comparable to its
theoretical bound ε (especially for large values of K), the control of
the number of false detections remains satisfactory.

A synthetic example that illustrates the behavior of this detector
of strong target centers is proposed in Fig. 11. In this experiment,
we used a synthetic image with size 128 × 512 (see its modulus in
Fig. 11 (a)) containing 466 targets with complex amplitudes of the
type A = ρ · eiϕ with ρ = 10, ϕ ∼ U[0,2π], and centers locations of
the type (x0,y0) = (k0 + tx, `0 + ty) where (k0, `0) denotes a de-
terministic integer pixel position and (tx, ty) ∼ U[−0.5,0.5]×[−0.5,0.5]

a random translation. The synthetic image was also corrupted by a
speckle noise with parameter σ = 1 (that is, ten times less than
the targets amplitudes, which is the typical configuration where the
target sidelobes become visible in the vicinity of the target center
of a pseudo-raw SAR image). The quality of the detection can be
evaluated in terms of precision and recall. Those two quantities are

Algorithm 3: computation of the NFA function (15)
Inputs: a pseudo-raw image u0 : ω → C, two parameters K
and NT that will be used as inputs in Algorithm 2.
Output: a NFA-map vNFA : ω → R such as for all (k, `) ∈ ω,
vNFA(k, `) = NFA(Ru0(k, `)).
Steps:
(1) compute Rx := R

u
sample
0
x and Ry := R

u
sample
0
y using

Algorithm 2 over a realization usample
0 : ωsample → C of

the H0 model 3, then, set

σ̂(K,NT ) =
√

(‖Rx‖2 + ‖Ry‖2)/ (4 · |ωsample|)

(2) compute {Ru0(k, `)}(k,`)∈ω using Algorithm 2

(3) for all (k, `) ∈ ω, set vNFA(k, `) = 2 · |ω| · e
− Ru0 (k,`)2

2 σ̂(K,NT )2

3 In practice, we use a domain ωsample with size 512×512 which we assume to
be large enough to provide an accurate estimation of the parameter σ(K,NT )
of the Rayleigh distribution.

(a) input image (amplitude)

(b) NFA-threshold ε = 1: precision = 70%, recall = 95%

(c) NFA-threshold ε = 10: precision = 66%, recall = 97%
in red circled : differences between (b) and (c)

Fig. 11. Target detection by NFA thresholding. A numerical simulation
of strong targets mixed in stationary speckle is shown in (a). Targets are
detected using Algorithm 3 with two threshold values: ε = 1 (b) and ε =
10 (c) corresponding to different trade-offs between a good precision (limited
number of false alarms, setting of (b)) and high recall (few targets missed,
setting of (c)).

defined by

precision =
# correct detections
# detected targets

, recall =
# correct detections

# targets
,

so that 1 − precision represents the proportion of false positive
detections among the set of all detected targets, and 1 − recall
represents the proportion of false negative detections among the set of
all actual targets. The detections results corresponding to ε = 1 and
ε = 10 are displayed in Fig. 11 (b) and Fig. 11 (c). Since increasing
ε yields more detections, we display in black the detections common
to both settings of ε, and in circled red the targets that were detected
at the level ε = 10 but not at the level ε = 1. We can see that
both settings yield a good recall score, which means that the targets
centers are well detected. However, the precision score is worse than
the recall due to an over-detection effect of targets centers around
the true target centers, which will not be an issue for the applications
discussed in the following paragraphs. We see that for ε = 1 only one
(false) detection is performed in the area with pure speckle (bottom-
center of the image), which is exactly what we expect according to
Proposition 1. Increasing ε improves the recall (thus, the number of
correct detections) at the cost of increasing the false alarms in pure
speckle, as seen in Fig. 11 (c).

B. Speckle plus targets decomposition

We derived in Section IV-A an a contrario criterion that can be
used to decide whether or not the center of a strong target is present
within a given pixel (k0, `0) ∈ ω of the pseudo-raw image u0. Indeed,
when NFA(Ru0(k0, `0)) ≤ ε (for instance, for ε = 1), we assume
that u0 contains a strong target centered at the sub-pixellic position
(x0, y0) := (k0 − Tx(k0, `0), `0 − Ty(k0, `0)). Therefore, we can
decompose u0 into

∀(k, `) ∈ ω , u0(k, `) = w0(k, `) +A0 s0(k, `) , (18)

noting A0 ∈ C the complex amplitude of the target, s0(k, `) =
sinc(k − x0, `− y0) and w0 the image that would have been ob-
tained in the absence of the target. In order to be able to extract the
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target from u0 we need to compute an estimate Ã0 of the target
amplitude A0, which can be easily done by minimizing a least-
squares criterion, that is by computing

Ã0 = argmin
A0∈C

‖u0 −A0 s0‖2 =
∑

(k,`)∈ω

u0(k, `) s0(k, `) , (19)

as done for instance in [23]. One can remark that (19) also cor-
responds to the maximum likelihood estimator of A0 if we assume
in (18) that w0 is a pure and stationary speckle (whatever its constant
reflectivity). Finally, we can remove the target from u0 by computing
u0 − Ã0 s0 (which can be viewed as an estimate of w0 in (18)) and
repeat the process in a greedy way until no more targets are detected
in the image.

Usually, the practical implementation of the a contrario detectors
consists in extracting the ε-meaningful structures in decreasing NFA
order. In our case, this would boil down to the following steps:

(i) compute {Ru0(k, `)}(k,`)∈ω and find the position (k, `) ∈ ω
such as NFA(Ru0(k, `)) is minimal

(ii) if NFA(Ru0(k, `)) ≤ ε, consider that a target is present in u0

at the sub-pixellic position (k−Tx(k, `), `−Ty(k, `)), estimate
its amplitude using (19), subtract the target from u0, add the
target features (the center position and the complex amplitude
of the target) to the set of extracted targets, then go back to (i).

The algorithm then stops when no more position (k, `) ∈ ω fulfills
NFA(Ru0(k, `)) ≤ ε. Such an approach involves the complete
recomputation of {Ru0(k, `)}(k,`)∈ω before each target extraction,
yielding a typical execution time of 15 seconds per extraction for
an image with size |ω| = 1000× 1000. Thus, in presence of several
thousands of targets, the total execution time may exceed a day which
can be problematic in many situations. For that reason, we decide to
adopt a strategy similar to CLEAN, by processing all positions (k, `)
in decreasing order of |u0(k, `)|. The crucial difference between our
approach and the classical CLEAN algorithm is that our a contrario
criterion (that is, the comparison of NFA(Ru0(k, `)) to the threshold
ε) is used to decide whether a target extraction should be done at
position u0(k, `) or not. In general situations, this strategy avoids
the recomputation of Ru0 over all the domain ω and offers a nice
reduction of the execution time (in practice, by a factor 15). Our
revisited CLEAN algorithm is described in Algorithm 4. Each target
extracted from a given pseudo-raw image using Algorithm 4 is
represented by a 3-uple (x, y,A) ∈ R2 ×C such that (x, y) denotes
the (sub-pixellic) position of the target center and A its complex
amplitude. The algorithm returns the set C of all extracted targets
and the image w0 obtained by removing from u0 all the targets of
C . By construction, one can recover u0 from w0 and C using

∀(k, `) ∈ ω , u0(k, `) = w0(k, `) + S0(C )(k, `) , (20)

where we have set

S0(C )(k, `) =
∑

(x,y,A)∈C

A sinc(k − x, `− y) . (21)

We discuss in Fig. 12 the quality of the decomposition as well as
the ability of Algorithm 4 to extract the correct number of targets
into synthetic data made of a linear combination of ten targets mixed
to stationary speckle. We can see in Fig. 12 that the number of
targets extracted using Algorithm 4 is comparable to 10 + ε (ten
correct detections and ε false detections), excepting for large levels
of noise that lead to less detections (the targets are not strong anymore
compared to the noise level), or for small levels of noise in which case
the number of detections increases due to the sensitiveness of the NFA
model to the presence of residual sidelobes which remain in strong
contradiction with the H0 model, leading to additional detections.

level of the average number of MSE PSNR (dB)noise (σ) detected targets

0.01 14.5 1.24 · 10−6 59.1
0.02 12.3 2.96 · 10−6 55.3
0.03 11.8 5.64 · 10−6 52.5
0.04 11.7 9.21 · 10−6 50.4
0.05 11.6 1.40 · 10−5 48.5
0.06 11.7 2.03 · 10−5 46.9
0.07 11.7 2.76 · 10−5 45.6
0.08 11.7 3.69 · 10−5 44.3
0.09 11.7 4.75 · 10−5 43.2
0.1 11.7 6.01 · 10−5 42.2
0.2 6.5 3.67 · 10−4 34.4
0.3 2.4 5.99 · 10−4 32.2

Fig. 12. Quality of the speckle plus target decomposition. We synthesized
a set C0 containing ten targets (x0, y0, A0) with random center position
(x0, y0) ∼ U[0,100]×[0,100], and random complex amplitude A0 = eiϕ,
such as ϕ ∼ U[0,2π]. The image S0(C0) containing those targets was cor-
rupted by a stationary speckle with reflectivity 2σ2, by adding independently
to the real and imaginary parts of S0(C0) a Gaussian noise with zero-mean
and standard deviation σ. Then, we used Algorithm 4 (with parameters setting
K = 25, NT = 20 and ε = 1) to compute from the image the set of
detected targets C . The same experiment was repeated one thousand times
for different noise level σ. On the second column of this Table, we display the
average number of extracted targets, on the third column, the average mean
square error (MSE) between S0(C0) and S0(C ), and on the last column, the
corresponding PSNR (using PSNR = −10 · log10(MSE)).

Also, we display in Fig. 13 several examples of decompositions
u0 = w0 + S0(C ) obtained from satellite and airborne images, or
synthetic data.

Algorithm 4: our revisited CLEAN algorithm
Inputs: a pseudo-raw image u0 : ω → C, two parameters K
and NT , and a threshold ε > 0 for the NFA (15) that roughly
represents the maximal allowed number of false detections.
Outputs: a cleaned image w0 : ω → C and a set of targets4 C .
Initialization:

(i) compute σ̂(K,NT ) as in step (1) of Algorithm 3 and set
NFA : r 7→ 2 · |ω| · exp

(
− r2

2σ̂(K,NT )2

)
(ii) set w0 = u0, C = ∅ and j = 1.

Steps 4:
(1) compute {wxt }t∈T and {wyt }t∈T the horizontal and verti-

cal translations of w0 as in Algorithm 1
(2) if (j ≤ |ω|), then find the position (kj , `j) ∈ ω of the j th

brightest value of |w0|, otherwise the algorithm stops
(3) compute (tx, ty) = T (kj , `j) and r = Rw0(kj , `j)

(4) if NFA(r) > ε, then set j = j + 1 and go back to (2)
(5) set C = C ∪{(x, y,A)} where x = kj − tx, y = `j − ty

and A =
∑

(k,`)∈ω w0(k, `) sinc(k − x, `− y)

(6) remove the target (x, y,A) from w0 by setting

∀(k, `) ∈ ω , w0(k, `) = w0(k, `)−A sinc(k − x, `− y)

(7) set j = 1 and go back to (1)

4 Each target contained in C is characterized by a 3-uple (x, y,A) where
(x, y) ∈ R2 denotes the coordinates of the target center, and A ∈ C its
amplitude. 1 Notice that step (3) amounts to apply to w0 (instead of u0)
the steps (13a)-(13j) of Algorithm 2. Note also that, in step (5), the target
amplitude A can be efficiently computed as the inner product between the
mono-dimensional signals ` 7→ wxtx (kj , `) and ` 7→ sinc(`− `j + ty).
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= +

u0 w0 S0(C )

Fig. 13. Decomposition of SAR images into targets and background. After detection of targets in a SAR image u0 (first column) using Algorithm 4, two
images are computed: the residual image w0 that contains the speckle-dominated background (center column) and the component S0(C ) (see Eq. (21)) due
to detected targets (third column).
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C. Applications of the decomposition

The extraction from a pseudo-raw image u0 : ω → C of a set of
targets C offered by Algorithm 4 can be used in various interesting
ways. First, it can be used to suppress the target sidelobes effect
in the pseudo-raw image at arbitrary resolution. Indeed, since the
image w0 produced by Algorithm 4 is free of targets, it can be
efficiently resampled (for instance, using the Shannon interpolation)
at any resolution. Once image w0 is resampled on the new sampling
domain, we can add the targets without creating sidelobes effect
simply by changing the coordinates of all target centers to make them
coincide with the new sampling grid. Let us describe more precisely
how such manipulation can be done. Recall that the initial sampling
domain ω = {0, . . . ,m − 1} × {0, . . . , n − 1} corresponds to the
sampling with unitary step (in both range and azimuth directions) of
the continuous spatial domain ωc := [0,m)× [0, n). Let ω′ denote a
finite subset of ωc that represents the targeted sampling domain. For
instance, one can take

ω′ =
1

z
·
{

0, . . . , z ·m− 1

}
× 1

z
·
{

0, . . . , z · n− 1

}
to perform a zooming (z ≥ 1) or unzooming (z < 1) with factor
z in both directions, but any other choice of ω′ (even irregular) can
be considered. Let Dω′(C ) : ω′ → C the recombination of C into
discrete Diracs on the grid ω′, which is defined by

∀(x′, y′) ∈ ω′, Dω′(C )(x′, y′) =
∑

(x,y,A)∈C

Aδπω′ (x,y)(x
′, y′) , (22)

where πω′(x, y) = argmin(x′,y′)∈ω′ ‖(x − x′, y − y′)‖ denotes a
projection of (x, y) over ω′, and δπω′ (x,y)(x

′, y′) is defined by

∀(x′, y′) ∈ ω′ , δπω′ (x,y)(x
′, y′) =

{
1 if (x′, y′) = πω′(x, y)
0 otherwise,

so that δπω′ (x,y) simply represents a discrete Dirac centered at the
position πω′(x, y) ∈ ω′. Consequently, the image Dω′(C ) defined
in (22) is a linear combination of discrete Diracs centered at different
positions of the grid ω′, and does not present any sidelobes. Finally,
one can resample u0 over ω′ without producing undesirable sidelobe
effects by computing Rω′(u0) : ω′ → C, defined by

∀(x′, y′) ∈ ω′ , Rω′(u0)(x′, y′) = W0(x′, y′) + Dω′(C ) , (23)

where w0 and C denote the outputs of Algorithm 4 applied to u0,
and W0 the Shannon interpolate of w0.

A straightforward and interesting application consists in taking
ω′ = ω in (23), which exactly amounts to replace S0(C ) by Dω(C )
in (20), and yields an image Rω(u0) with the same resolution as the
initial pseudo-raw image u0, but without undesirable sidelobes effects
since all the detected strong targets are replaced by discrete Diracs,
as illustrated in Fig. 14. Therefore, the computation of Rω(u0) can
be considered as an alternative to the irregular resampling strategy
presented in Section III, that leads to a similar sidelobes suppression
while better preserving the pseudo-raw image in areas where no
strong target is present. This advantage is particularly interesting to
perform interferometry, as we shall discuss now.

As stated before, information about the elevation of a scene can
be computed given two registered views of the same scene, provided
we apply an appropriate ramp-phase to one of the two images in
order to get rid of orbital fringes patterns. Noting Φ the operator
corresponding to this transformation, and u and u′ the two registered
SLC images, we can compute the coherence map as the quantity

c(u, u′) =
µ
(
u · Φ(u′)

)
√
µ(|u|2) ·

√
µ(|Φ(u′)|2)

, (24)

pseudo-raw image u0 image Rω(u0)

Fig. 14. Recombination of targets into discrete Diracs for sidelobes
suppression. We used Algorithm 4 to compute from two pseudo-raw images
u0 (first column) a cleaned image w0 and a set of targets C . According
to (20), each pseudo-raw image can be decomposed as u0 = w0 + S0(C )
where S0(C ) is made of a linear combination of cardinal sine functions
sampled over ω, corresponding to the contribution to u0 of the targets present
in C (see Fig. 13). By computing Rω(u0), using (23) with ω′ = ω, we
replace the S0(C ) component by a linear combination of discrete Diracs on
the grid ω, leading to the images without sidelobes effects (second column).

where µ denotes a local averaging operator (the averaging domain
used in our experiments was a disk with radius 2.5 pixels). The
coherence map defined in (24) is designed to be high in areas
grouping pixels with similar elevation, provided no decorrelation
occurred between u and u′. In Fig. 15, we compare the coherence
maps computed from apodized pairs of images (see Fig. 15 (a)),
from pseudo-raw images (see Fig. 15 (b)), from irregular resamplings
of those pseudo-raw images (see Fig. 15 (c)), or from the images
obtained by applying the Rω operator to the pseudo-raw images (see
Fig. 15 (d)). Comparing Fig. 15 (a) to Fig. 15 (b) yields mitigated
conclusions. On the one hand, apodization is responsible for over-
estimated coherence in Fig. 15 (a). On the other hand, over-coherent
values can also be found in Fig. 15 (b) along the sidelobes of the
strong targets (see the cross shape on the left side of Fig. 15 (b)). As
can be seen in Fig. 15 (c), the irregular resampling strategy presented
in Section III successfully solves the issue of over-coherence along
the sidelobes of the strong targets, unfortunately it also induces a
severe loss of coherence in areas where no strong target is present, due
to the fact that the irregular grid used to resample both images may
differ in those areas. The coherence map computed from Rω(u0) and
Rω(u′0), displayed in Fig. 15 (d), is clearly better since it also avoids
over-coherence along sidelobes, but without introducing a global
decoherence between the two images. This empirical conclusion is
also confirmed in Fig. 16 using two coherent pseudo-raw SLC SAR
images u0 and u1 made of synthetic sets of coherent targets C?

and C ?
1 and coherent synthetic speckle w?0 and w?1 . Indeed, we see

that the over-coherence due to the target sidelobes in c(u0, u1) (first
row of Fig. 16) is avoided in c(Rω(u0), Rω(u1)) (second row of
Fig. 16). Besides, we see that the coherence of the background (due
to the coherence of the synthetic speckle that we used) is also well
preserved by the Rω operator. Besides, we see that the coherence
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

close-up view of (b) close-up view of (d)

Fig. 15. Coherence map of the interferometric phase. We display in (a)
the coherence map c(uω , u′ω) (Eq. (24)) computed from two registered
TerraSAR-X SLC images undergoing apodization (but with no zero-padding).
Removing the apodization yields two pseudo-raw images whose coherence
map c(u0, u′0) is displayed in (b). We display in (c) the coherence map
c(v0, v′0) computed from the irregular resamplings of u0 and u′0, while we
display in (d) that computed from Rω(u0) and Rω(u′0).

map c(Rω(u0), Rω(u1)) is very close to that we obtain by applying
the Rω operator to the actual ground-truth decomposition (third row
of Fig. 16) showing that the Rω operator successfully improves the
coherence map in the vicinity of the centers of the strong targets
thanks to the removal of the targets sidelobes, while preserving at
the same time the coherence of the background.

The last experiment that we shall consider focuses on the joint
resampling of a pseudo-raw image u0 : ω → C over a grid ω′ 6= ω
and the suppression of the sidelobes due to strong targets on this new
resampling grid. As we already illustrated in Fig. 7, the irregular
resampling procedure is not compatible with posterior sub-pixellic
manipulations due to the re-appearance of sidelobes at sub-pixel
scales. However, the Rω′ operator can successfully achieve this task,
as we illustrate in Fig. 17, where we have set

ω′ =
m

M
{0, 1, . . . ,M − 1} × n

N
{0, 1, . . . , N − 1} (25)

and used Rω′ to resample a full sequence of twenty-six pseudo-raw
Terra-SAR-X images back to the initial grid used by the data-provider
(recall that (M,N) and (m,n) are the image dimensions before and
after resampling the image at the critical Nyquist rate, as illustrated
in Fig. 1).

V. CONCLUSION AND PERSPECTIVES

In this paper, we addressed in two different ways the issue of
sidelobes suppression with no loss of resolution and statistics preser-
vation for pseudo-raw images. The first proposed approach consists

Coherent acquisition of two pseudo-raw images

u0 := w?0 + S0(C
?
0 ) u1 := w?1 + S0(C

?
1 ) c(u0, u1)

Estimated recombination with discrete Diracs

R0 := Rω(u0) R1 := Rω(u1) c(R0, R1)

Ground-truth recombination with discrete Diracs

R?0 := w?0 + Dω(C
?
0 ) R?1 := w?1 + Dω(C

?
1 ) c(R?0 , R

?
1)

Fig. 16. Coherence map on synthetic coherent pseudo-raw acquisitions.
The complex images u0 and u1, whose moduli are displayed in the first
row, represent two synthetic coherent pseudo-raw images. Those images were
synthesized using two coherent sets of targets C ?0 and C ?1 (each target in C ?0
is also present in C ?1 with the same complex amplitude but with a random
shift of at most 0.1 pixel of its center position) and two coherent speckle
images, noted w?0 and w?1 , whose coherence is linearly increasing from 0%
to 80% along the horizontal axis. Applying the Rω operator to u0 and u1

yields the images R0 and R1, whose moduli are displayed on the second
row. They can be compared to the images R?0 and R?1 that one would obtain
if the speckle plus target decomposition was perfectly done. The coherence
maps computed from the pair of images (u0, u1), (R0, R1) and (R?0 , R

?
1)

are displayed in the third column and share the same color scale as in Fig. 15.

in resampling the pseudo-raw image over an irregular grid that
efficiently cancels the sidelobes in the vicinity of the strong targets
while preserving the speckle statistics (in particular the valuable
spatial uncorrelation of the speckle in the pseudo-raw images) in
fully developed speckle areas. The irregular resampling grid as well
as the resampled image are computed using a simple algorithm that
exhibits a linear complexity with respect to the image size. However,
the resampled images delivered by this scheme cannot be efficiently
interpolated (due to the reappearance of the targets sidelobes at the
sub-pixel scale) and are not well suited to applications where the
preservation of the interferometric phase is needed.

The second approach that we proposed allows for the decomposi-
tion of the pseudo-raw image into a speckle-dominated component
and a set of targets, using a revisited CLEAN algorithm that relies
on a new detector of the sub-pixellic position of strong target centers
specifically designed for pseudo-raw images. The latter detector is
based on the a contrario methodology which provides an explicit
control of the number of false detections as well as a well justified
stopping criterion for the CLEAN procedure. The derived revisited
CLEAN algorithm exhibits a higher computational complexity than
the resampling algorithm (its complexity is proportional to the size
of the image multiplied by the number of targets found in the
image). However, the decomposition of the image that it provides
is particularly suited to numerous SAR applications. In particular, it
avoids the limitations related to the resampling strategy mentioned
above. Indeed, we showed how the extracted targets could be re-
combined without creating sidelobes at any resolution. Besides, the
decomposition is conservative (the initial pseudo-raw image can be
recovered exactly from the two components of the decomposition),
and we showed that it allows the efficient preservation, and even the
improvement, of the interferometric phase in situations where several
coherent views of the scene are available.

More generally, we believe that the ability to efficiently compute
the decomposition using our revisited CLEAN algorithm opens very
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Temporal multi-look averaging of the initial (apodized and oversampled) sequence
{
uk
}

1≤k≤26

Temporal multi-look averaging of the sequence
{
Rω′ (u

k
0)
}

1≤k≤26

Fig. 17. Temporal multi-look averaging at the initial resolution. First row: several parts of the temporal multi-look averaging computed from twenty-six
TerraSAR-X images {uk}1≤k≤26 (used as provided by the spatial agency, i.e., undergoing apodization and oversampling with factors M/m ≈ 1.10 and
N/n ≈ 1.28 in the range and azimuth directions). Second row: the temporal multi-look averaging of the sequence {Rω′ (uk0)}1≤k≤26, where {uk0}1≤k≤26

denotes the pseudo-raw sequence (with spatial domain ω of size m× n) associated to {uk}1≤k≤26, and ω′ is defined in (25). We can see that using Rω′
yields an efficient resampling of the pseudo-raw sequence since it benefits from the improved level of details of the pseudo-raw sequence (due to the absence
of apodization) without suffering from undesirable sidelobe effects in the vicinity of the strong targets.

interesting perspectives since it splits the image into two components
having strongly different natures. Indeed, in many situations, those
two components are difficult to process when mixed together while
processing the two components separately may drastically simplify
the study. For instance, we can decide to focus only on the target
component to perform detection tasks (alignments, clusters, changes,
permanent scatterers, . . . ), feature matching, or correspondences
between several looks (for instance for registration purpose). On
the contrary, we can decide to only focus on the speckle-dominated
component to perform tasks such as denoising, segmentation, classi-
fication, which may reveal more efficient in the absence of targets. It
would be also interesting to investigate the possibility to design SAR
image processing models that would rely on the two components
jointly.

SOURCE CODES

Source codes corresponding to the algorithms described in this
paper are freely available on the web pages of the authors.
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