
Towards the Tractable Discovery

of Association Rules with Negations

Jean-François Boulicaut, Artur Bykowski, and Baptiste Jeudy

Institut National des Sciences Appliquées de Lyon, Laboratoire d’Ingénierie des
Systèmes d’Information, Bâtiment 501, F-69621 Villeurbanne cedex, France.
{jfboulic|abykowsk|bjeudy}@lisi.insa-lyon.fr

Abstract. Frequent association rules (e.g., A∧B ⇒ C to say that when properties
A and B are true in a record then, C tends to be also true) have become a popular
way to summarize huge datasets. The last 5 years, there has been a lot of research
on association rule mining and more precisely, the tractable discovery of interesting
rules among the frequent ones. We consider now the problem of mining association
rules that may involve negations e.g., A ∧ B ⇒ ¬C or ¬A ∧ B ⇒ C. Mining such
rules is difficult and remains an open problem. We identify several possibilities for
a tractable approach in practical cases. Among others, we discuss the active use of
constraints. We propose a generic algorithm and discuss the use of constraints to
mine the generalized sets from which rules with negations can be derived.

1 Introduction

The design of semiautomatic methods for locating interesting information in
the masses of unanalyzed or underanalyzed data, the so-called data mining
techniques, has become an important research area. Mining association rules
[1] is a popular data mining technique that has been proved useful for real
data analysis (see e.g., its application to basket analysis or [11] for alarm data
analysis). During a typical association rule mining process, one first computes
frequent patterns using (expensive) data mining algorithms. Then, one has
to compute and/or query these collections for the needed post-processing
phases (e.g., deriving rules and ranking them according to various objective
measures of interestingness like confidence [2] or intensity of implication [8]).

A problem with such a process is that (a) the selection of interesting
patterns has to be performed only on frequent patterns, and (b) standard
association rules are not enough expressive for some applications. Mining
all infrequent rules is known to be intractable, but is it interesting? Indeed,
infrequent patterns can be considered as the result of noisy data. However,
the frequency threshold that bounds the interest for an application might be
too low from the computational complexity point of view. Looking for more
expressive rules, we can consider various generalizations, e.g., the introduc-
tion of taxonomies on items [9], associations between multiple relations [6] or
general boolean rules [12]. In this paper, we consider a special case of boolean
rules, namely association rules with negations. We want to find associations

2 Jean-François Boulicaut et al.

between positive attributes and negative ones. Mining frequent (generalized)
rules turns to be intractable in practical cases, i.e., for frequency thresholds
that enable the discovery of “standard” association rules. We would like to
identify possibilities for a tractable approach to the computation of gener-
alized (frequent) sets and their post-processing into generalized association
rules. We believe that the inductive querying framework points out promising
issues [10,5,7].

The contribution of this paper is as follows. First, we explain why a naive
approach (i.e., the straightforward encoding of both positive and negative
attributes and the use of standard algorithms like Apriori) cannot be used.
Then we consider how it is possible to derive some generalized rules using only
the information about “positive” attributes. Finally, we consider inductive
queries that return generalized sets (from which rules with negations can be
derived) and discuss briefly their evaluation. Roughly speaking, this means
that, given constraints on desired sets, one must identify which of them can
be “pushed” efficiently into the discovery algorithm. Using results from [4],
we consider relevant constraints for mining association rules with negations.

2 Inductive Databases and Inductive Queries

We consider the formalization of inductive databases [5] and the concept of
inductive query in our context.

Definition 1 (schema and instance). The schema of an inductive databa-
se is a pair R = (R, (L, E ,V)), where R is a database schema, L is a countable
collection of patterns, V is a set of result values, and E is the evaluation

function that characterizes patterns. Given a database r over R and a pattern
θ ∈ L, this function maps (r, θ) to an element of V . An instance (r, s) over
R consists of a database r over the schema R and a subset s ⊆ L.

A typical KDD process operates on both of the components of an induc-
tive database. Queries that concerns only the pattern part, called hereafter
inductive queries, specify mining tasks.

Definition 2 (inductive query). Given an inductive database instance
(r, s) whose schema is (R, (L, E ,V)), an inductive query is denoted as σC(s)
and specifies the sentences from s that are interesting. C is a conjunction of
constraints that must be fulfilled by the desired patterns. Checking some of
the conjuncts may need for the evaluation of E on r and involve data scans.

Example 1. Assume the minable view is trans(Tid,Item) i.e., a typical
schema of data for basket analysis. Figure 1 provides a toy dataset under
a boolean matrix format. For instance, if trans(2,A) and trans(2,C) de-
fine the transaction 2, row 2 contains true for columns A and C and false for
column B. It also means that, in row 2 of the “complemented” matrix, Ā (to
denote ¬A) and C̄ are false while B̄ is true.

Discovery of Association Rules with Negations 3

Definition 3 (set mining task). We look for generalized sets X ∈ 2Items

where Items is the set of all the values of attribute Item and its negative
counterpart. Let F(X, r), the frequency of X , denotes the percentage of
transactions that involve each attribute in X . A set X is γ-frequent in r
if F(X, r) ≥ γ. This constraint is denoted by Cfreq. The pattern part of
the associated inductive database is (L, E , [0, 1]) where L = 2Items and E re-
turns the set frequency. Mining generalized sets leads to the evaluation of
σC(2Items) where C is a conjunction of constraints. Mining frequent general-
ized sets means that C contains Cfreq.

Example 2. Given data from Fig. 1, Items={A, B, C, Ā, B̄, C̄}. If Cfreq(X) =
F(X, r) ≥ 0.5, the query σCfreq

(2Items) returns {A, B, C, C̄, AB, AC, BC̄}.
Assume that Csize (resp., Cmiss) denotes the constraint |X | ≤ 2 (resp.,
{A, B̄}∩X = ∅) for a set X. σCsize∧Cmiss

(2Items) returns {B, C, Ā, C̄, BC, BĀ,
BC̄, CĀ, CC̄, ĀC̄}. σCfreq∧Csize∧Cmiss

(2Items) returns {B, C, C̄, BC̄}.

r =

A B C

1 1 1 1
2 1 0 1
3 0 1 0
4 1 1 0

Its “complement” is

¬A ¬B ¬C

1 0 0 0
2 0 1 0
3 1 0 1
4 0 0 1

Fig. 1. A binary dataset r

Definition 4 (standard association rule mining task). An association
rule is an expression X ⇒ Y where X ⊆ Items and Y ∈ Items \ X . The
typical “behavior” of these rules in an instance r is evaluated by means of
two interestingness measures, namely the support and the confidence. The
support of X ⇒ Y in r is equal to F(X∪{Y }, r) and its confidence is equal to
its support divided by F(X, r). In terms of an inductive schema, V is [0,1] ×
[0,1] and E provides the support and the confidence. The standard association
rule mining task concerns the discovery of the so-called strong rules whose
support and confidence are greater or equal to user-given thresholds, resp.,
γ and φ. It corresponds to inductive queries on the language of rules whose
constraint contains at least this selection criterion.

Example 3. With γ=0.5 and φ=0.9, C̄ ⇒ B is discovered in data of Fig. 1
while B ⇒ C̄ is not (its confidence is too low).

3 Mining Association Rules with Negations

Notations. When mining association rules, the expensive step concerns the
computation of the (frequent) sets from which the rules are derived. We
say that a set T ∈ 2Items satisfies a constraint C if C(T) evaluates to true.
If C is a constraint, let SATC(Items) denote the collection {T ⊆ Items, T

4 Jean-François Boulicaut et al.

satisfies C}. In other terms, SATC(Items) is the result of the inductive query
σC(2Items). Most of the tractable queries involve Cfreq: given the threshold γ,
Cfreq(T) = F(T, r) ≥ γ. Let Items+ (resp. Items−) denote the set of positive
(resp. negative) attributes in Items. A subset of Items+ is called a positive
set. SATCfreq

(Items) is the collection of frequent (generalized) sets and we
assume that they are stored, with their frequencies in FSγ . FS+

γ denotes the
collection of frequent positive sets with their frequencies. Notice that we need
the frequency of every frequent set since our goal is to derive rules. Given a
set T ∈ 2Items, let NNT(T) denote the number of negative elements in T , PT(T)
denote the set of positive elements in T , P(T) denote the set of elements in T
all turned to their positive counterparts. We often use a string notation for
sets e.g., ĀB̄C for {Ā, B̄, C}.

Example 4. NNT(ĀB̄C) = 2, PT(ĀB̄C) = {C}, P(ĀB̄C) = ABC.

3.1 The “Standard” Apriori Algorithm

We consider an abstract definition of the Apriori algorithm [2]. It takes a
dataset r and, given the thresholds γ (frequency) and φ (confidence), outputs
every strong association rule.

1. C1 := set-of-all-singletons(Items)
2. k := 1
3. while Ck 6= ∅ do
4. Phase 1 - frequency constraint is checked - it needs a data scan

Lk := SATCfreq
(Ck)

5. Phase 2 - candidate generation for level k+1
Cg

k+1 := generate(Lk)
6. Phase 3 - candidate safe pruning

Ck+1 := safe-pruning-on(Cg
k+1)

7. k := k + 1

8. FSγ :=
⋃k−1

i=1 Li

9. Phase 4 - rule generation
for each X ∈ FSγ do

10. for each Y ∈ X do
11. test-for-output(X \ {Y } ⇒ {Y })

In [2], generate(Lk) provides the candidates by fusion of two elements from
Lk that share the same k−1 first elements (in lexicographic order), and phase
2 and 3 are merged. safe-pruning-on(Cg

k+1) just eliminates the candidates
for which a subset of length k is not frequent. In step 8, all the frequent sets
and their frequencies are stored in FSγ . In [2], test-for-output consists of
testing if the confidence of the rule is high enough w.r.t. φ.

Example 5. Considering the data from Fig. 1 and the thresholds γ = 0.5 and
φ = 1, Apriori outputs only C ⇒ A and C̄ ⇒ B.

Discovery of Association Rules with Negations 5

Apriori can work fine for huge sparse datasets. Its practical time com-
plexity is O(n × nc) where n is the number of transactions and nc the num-
ber of candidates (i.e., the size of FSγ plus the size of its negative border
Bd−(FSγ) [13]). Bd−(FSγ) is the collection of infrequent sets whose every
subset is frequent. Deriving rules is cheap when checking the selection crite-
rion needs only FSγ (e.g., confidence evaluation for frequent rules).

3.2 Problems with Negations. . . and Potential Solutions

A Naive Approach Assume the use of Apriori on a dataset that has been
“complemented”. Considering the boolean matrix representation, it means
that for each column A, one adds a column Ā. In a row, i.e., for a given
transaction, the value of Ā is the boolean negation of the value for A.

The problem with this approach is that for reasonable frequency thresh-
olds, the number of frequent sets explodes. For instance, assume you have
100 positive attributes with a maximum attribute frequency of 0.1 and a fre-
quency threshold γ = 0.05. It turns out that every set of negative attributes
up to size 9 is frequent. In that case, it leads to more than

(

100
9

)

> 1012

frequent sets [12]. In fact, this encoding also introduces a high correlation
in the dataset: many association rules with high confidence hold in it. In
practice, it means that we have to take higher frequency thresholds, possibly
leading to uninteresting mining phases. Furthermore, even if the extraction
of the frequent sets remains tractable, most of them will involve only neg-
ative attributes and, most of the derived rules (with high confidence) will
concern only negative attributes as well. This is unfortunate for many appli-
cation domains. Notice also that the positive part of the data can be already
highly-correlated so that Apriori can even not tackle the computation of
FS+

γ i.e., subsets of Items+ that are frequent.

“Approximation” of Association Rules with Negations Assume in
this subsection that we compute FS+

γ i.e., the collection of γ-frequent sets
for the positive attributes only. We already know that this problem is easier
to solve. Using only that (positive) information, it remains possible to mine
some association rules with negations. Proofs of these theorems are not given
due to space limitation.

Theorem 1. The support of a generalized set T can be computed using the

collection FS+
γ if P(T) ∈ FS+

γ and is equal to:

F(T, r) =
∑

PT(T)⊆X⊆T

(−1)NNT(X)F(P(X), r) .

Example 6. Considering data from Fig. 1, FS+
0.5 = {A, B, C, AB, AC}1. Since

P(AB̄) = AB ∈ FS+
0.5, F(AB̄, r) = F(A, r) − F(AB, r) is known exactly

1 Notice also that the frequency in r is associated to each frequent set in FS
+

0.5

6 Jean-François Boulicaut et al.

(= 0.25). P(ABC̄) = ABC 6∈ FS+
0.5 and F(ABC̄, r) = F(AB, r)−F(ABC, r)

can not be evaluated exactly.

Theorem 2. The support of all subsets of a set T can be derived from the

collection FS+
γ if P(T) ∈ FS+

γ .

The support of some generalized sets can be computed exactly from the
positive frequent sets only. The number of terms of the sum is growing ex-
ponentially with the number of negative elements in the set. However, it can
not be higher than |FS+

γ |, which is the number of all possible terms of the
sum. Therefore, the computation of the support of a generalized set remains
tractable when the computation of FS+

γ is tractable.
Consider now the generation of rules from a frequent set X ∈ FS+

γ . Let
AX be a generalized set such that P(AX) = X . There are 2|X| such generalized
sets from which the Phase 4 of the Apriori algorithm can be performed.
This way, we can generate a lot of generalized rules, but the collection is
not complete w.r.t. the support and confidence criteria: there is no guarantee
that it computes all the strong generalized rules. Our experiments have shown
that it can even be far from the intended result.

A special case of this method can be performed for free during the stan-
dard association rule discovery. It concerns a restricted form of general-
ized rule: rules with a set included in Items+ at the left–hand side and
an attribute from Items (positive or negative) at the right–hand side. Af-
ter the computation of FS+

γ , for each frequent set X ∈ FS+
γ and for each

Y ∈ X (all of them are frequent, too), it is possible to test the confidence of
X \ {Y } ⇒ {Y } and X \ {Y } ⇒ {Ȳ } as well. Testing the confidence of the
second rule needs for the evaluation of 1− (F(X, r)/F(X \ {Y }, r)) ≥ φ i.e.,
F(X, r)/F(X \ {Y }, r) ≤ 1 − φ. However, even limited to this form, some
strong rules might be missed by the method. To be complete, we need to
know the frequency of all generalized frequent sets and we saw that is is not
realistic. However, it is possible to trade precision against completeness.

Consider now the possibility to compute imprecise interestingness mea-
sures for generalized rules by using only positive information. The idea is to
substitute to the unknown terms an interval that bounds the possible values
for the support and the confidence. Thus, it gives rise to an incertitude to
the values of these measures. Let us consider a second dataset in Fig. 2.

Example 7. Consider the rule AĒ ⇒ B. support(AĒ ⇒ B, r) = F(AB, r) −
F(ABE, r) and confidence(AĒ ⇒ B, r) = support(AĒ ⇒ B, r)/(F(A, r) −
F(AE, r)). F(ABE, r) is not available (because ABE is not in FS4/9 nei-
ther in Bd−(FS4/9)) but it can be estimated within the interval [0, 3/9]:
support(AĒ ⇒ B, r) ∈ [1/9, 4/9] and confidence(AĒ ⇒ B, r) ∈ [1/4, 1].

This method has been proposed in [12]. It gives rise to several problems.
First, a rule can be interesting (w.r.t. interestingness criteria), uninterest-
ing or unresolved. The last case arises when intervals for support and/or
confidence cross minimum support and/or confidence thresholds. It happens

Discovery of Association Rules with Negations 7

r =

A B C D E

1 1 1 1 0 0
2 0 0 1 1 1
3 0 1 0 0 1
4 1 1 1 0 1
5 1 1 1 0 0
6 1 1 0 1 0
7 1 0 0 0 1
8 0 1 1 0 0
9 1 0 0 1 0

Set Frequency
{A} 6/9
{B} 6/9
{C} 5/9
{D} 3/9
{E} 4/9

{A, B} 4/9
{A, C} 4/9
{A, E} 2/9
{B, C} 4/9
{B, E} 2/9
{C, E} 1/9

{A, B, C} 3/9

Fig. 2. A dataset and the frequency for each set ∈ FS
+

4/9
∪ Bd

−(FS
+

4/9
)

in Ex. 7. By substituting an interval of possible values to unknown terms in
the support formula of a generalized set, some sets can not be classified as
frequent or infrequent. Hence, for a complete strong rule generation in the
worst case, one has to enumerate every generalized set that is not known
as infrequent (i.e., that is frequent or unresolved). If we introduce “large”
intervals, it gives rise to a huge amount of unresolved sets. Lot of them might
be infrequent, but it is not possible to identify which ones.

Example 8. Continuing Ex. 7, from FS+
4/9∪Bd−(FS+

4/9), we infer 14 frequent

generalized sets, 19 unresolved ones, and 210 infrequent ones. On this toy
example the number of unresolved generalized sets is above the number of
frequent generalized sets. This would be worse if we had FS+

4/9 only, because

these numbers become respectively 11, 48 and 184.

Problems related to incertitude on set frequency amplify with the compu-
tation of the confidence or other interestingness measures. Providing better
estimations is important and worthwile.

Using Constraints A third direction of research is the effective use of
constraints during the set mining task. It concerns the effective computation
of SATC where C is a conjunction of atomic constraints that specify the
interesting sets from which “interesting” rules are to be derived. We saw that
Apriori uses the constraint Cfreq to prune the search space. Beside that, it
is possible to have a “generate and test” approach for the other constraints
(first generate all frequent generalized sets and then test other constraints on
them) but this is clearly intractable in many cases. The solution might come
from the study of constraint–based discovery of frequent sets [14,4].

4 A Constraint–Based Approach

In this section, we apply part of the work presented in [4] to our problem. A
simple observation is that the Apriori pruning is not only applicable to the
frequency constraint but also to all anti-monotone constraints.

Definition 5 (anti-monotonicity). A constraint C is anti-monotone if and
only if for all sets S, S’: S’ ⊆ S ∧ S satisfies C ⇒ S’ satisfies C

8 Jean-François Boulicaut et al.

Example 9. A systematic study of anti-monotone constraints on sets is in [14].
Continuing our running example, {A, B, C, D} ⊃ S and S ∩ {A, B, C} = ∅
are anti-monotone constraints on S. Indeed, Cfreq is anti-monotone. Another
interesting anti-monotone constraint is |S ∩ Items−| ≤ n which states that
every itemset can contain up to n negative attributes.

Conjunctions of anti-monotone constraints are anti-monotone and it is
easy to prove that pushing an anti-monotone constraint inside the search
space exploration leads to less computations. What is challenging is the pos-
sibility of pushing other constraints. This is difficult because the generation
and pruning steps must be rewritten to be complete. Moreover, pushing non
anti-monotone constraints can decrease the performance of the whole pro-
cess [4].

4.1 A Generic Algorithm G

We consider a generalization of Apriori to emphasize the potential for opti-
mization. Assume the constraint C can be written as C1∧C2∧C3∧C4∧Cg∧Cdbs

where Cdbs denotes constraints that need a database scan at checking time
and Cg denotes constraint checked during the generation step.

Algorithm G: computation of σC(2Items)

1. k := 1; L0 := {∅}
2. repeat
3. Cg

k := generate(Lk−1) # Candidate generation for level k and Test Cg

4. C1
k := Cg

k ∩ SATC1
Test C1

5. C2
k := prune(C1

k) # Safe pruning using anti-monotone constraints
6. C3

k := C2
k ∩ SATC2

Test C2

7. C4
k := C3

k ∩ SATCdbs
#Test Cdbs

8. Lk := C4
k ∩ SATC3

Test C3

9. k := k + 1
9. until there is no more candidates

10. return
⋃k−1

i=1 Li ∩ SATC4
Test C4

One problem is to choose how to split C into C1 ∧ C2 ∧ C3 ∧ C4 ∧ Cg ∧ Cdbs

(some of these can be the “true” constraint that always evaluates to true),
i.e., at what step of the algorithm should a constraint be tested. First, a
constraint can be pushed at the candidate generation step (step 3) if it is
possible to have an optimized generation procedure (e.g., with the constraint
C(S) = A ∈ S). Second, it is possible to test constraints on steps 4, 6, 7, 8 and
10. Constraint checking that needs database scans, e.g., for Cfreq, is performed
as step 7. Step 10 corresponds to a “generate and test approach”. Depending
on these choices, the generation and pruning steps might be rewritten to
ensure completeness [4]. The kind of data we have to process when mining
generalized sets is dense and highly-correlated. The Close algorithm [15,3]
makes the frequent set discovery tractable in such difficult cases. However,

Discovery of Association Rules with Negations 9

the original Close algorithm can only find frequent sets and is not designed
to mine other constrained itemsets. We have revisited this algorithm in [4].
In fact, the optimization mechanism in Close can be formalized as a new
pruning criterion due to a new anti-monotone constraint.

Definition 6 (anti-monotone constraint CClose). CClose(S) = S′ ⊂ S
⇒ S 6⊆ closure(S ′) where closure(S) is the maximal (for set inclusion)
superset of S which has the same frequency as S.

This anti-monotone constraint gives rise to a new safe pruning criterion
(besides the Apriori trick based on frequency testing). An important prop-
erty of the Close algorithm is its completeness, which means that it is pos-
sible to find SATCfreq

knowing SATCClose∧Cfreq

2.

Example 10. Let us find closure(BC) on example of Fig. 2. Items B and C
are simultaneously present in transactions 1, 4, 5 and 8. We can see that the
maximal set of attributes (∈ Items) that are true within these transactions
is {B, C, D̄}. Thus closure(BC) = BCD̄. By the definition of closures,
F(BC, r) = F(BCD̄) (= 4/9). Since closure(B) = B and closure(C) = C,
CClose(BC) is true.

Considering the Close algorithm as an instance of our generic algo-
rithm G (with the constraint CClose) allow one to take advantage of Close’s
improvements over Apriori together with the ability to “push” constraints.
To keep the completeness of Close, [4] shows that algorithm G can be used to
search for sets which satisfy C = CClose∧Cam∧Cm where Cam is anti-monotone
(i.e., it can contain Cfreq) and Cm is a motone constraint.

Definition 7 (monotone constraint). A monotone constraint Cm is the
negation of an anti-monotone constraint. If Cm is monotone, ¬ Cm is anti-
monotone: Cm(S) is true ⇒ ∀S′ ⊃ S, Cm(S′) is true.

Example 11. Continuing our running example, {A, B, C, D} ⊂ S and S ∩
{A, B, C} 6= ∅ are monotone constraints on S. An interesting case of a mono-
tone constraint, denoted as Calnp, is |S ∩ Items+| ≥ n. This constraint states
that every set has to contain at least n positive attributes.

5 Conclusion

We discussed the possibility to derive association rules with negations using
only the information about positive attributes. It gives rise to approxima-
tions of rule interestingness measures but has to be considered as a valuable
direction of research. Then, we considered how given constraints on the de-
sired rules can be “pushed” efficiently into a set mining algorithm. Using
results from [4], we proposed useful constraints for mining association rules

2 It is possible because Close outputs the closures of the sets in SATCClose∧Cfreq

10 Jean-François Boulicaut et al.

with negations, namely anti-monotone constraints (e.g., frequency constraint
or constraint based on closures) and monotone constraints (e.g., ensuring
the presence of positive attributes in the mined sets). This is an ongoing
research and experimental validations on real datasets have been performed
with the min-ex system [3] and can be obtained from the authors. This sys-
tem already implements the use of Cfreq , CClose and Calnp (cf. Ex. 11). We
considered constraints on generalized sets and now, this approach has to be
extended to rules.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules Between
Sets of Items in Large Databases. In Proc. ACM SIGMOD’93, 207–216, 1993.

2. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast
Discovery of Association Rules. In Advances in Knowledge Discovery and Data

Mining, 307–328. AAAI Press, 1996.
3. J.-F. Boulicaut and A. Bykowski. Frequent Closures as a Concise Representa-

tion for Binary Data Mining. In Proc. PAKDD’00, LNAI 1805, 62–73, Kyoto,
JP, 2000. Springer.

4. J.-F. Boulicaut and B. Jeudy. Using Constraints During Set Mining: Should
We Prune or not? In Proc. BDA’00, Blois, F, 2000. INRIA. to appear.

5. J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Querying Inductive
Databases: A Case Study on the MINE RULE Operator. In Proc. PKDD’98,
LNAI 1510, 194–202, Nantes, F, 1998. Springer.

6. L. Dehaspe and L. D. Raedt. Mining Association Rules in Multiple Relations.
In Proc. ILP’97, LNAI 1297, 125–132. 1997. Springer.

7. F. Giannotti and G. Manco. Querying Inductive Databases via Logic–Based
User Defined Aggregates. In Proc. PKDD’99, LNAI 1704, 125–135, Praha, CZ,
1999. Springer.

8. S. Guillaume, F. Guillet, and J. Philippé. Improving the Discovery of Asso-
ciation Rules with Intensity of Implication (short paper). In Proc. PKDD’98,
LNAI 1510, 318–327, Nantes, F, 1998. Springer.

9. J. Han and Y. Fu. Discovery of Multiple–Level Association Rules from Large
Databases. In Proc. VLDB’95, 420–431, Zürich, CH, 1995.

10. T. Imielinski and H. Mannila. A Database Perspective on Knowledge Discovery.
Communications of the ACM, 39(11):58–64, Nov. 1996.

11. M. Klemettinen. Rule Discovery from Telecommunication Network Alarm

Databases. PhD thesis, Dept. of Comp. Sc., Univ. of Helsinki, Jan. 1999.
12. H. Mannila and H. Toivonen. Multiple Uses of Frequent Sets and Condensed

Representations. In Proc. KDD’96, 189–194, Portland, USA, 1996.
13. H. Mannila and H. Toivonen. Levelwise Search and Borders of Theories in

Knowledge Discovery. Data Mining and Knowledge Discovery, 1(3):241–258,
1997.

14. R. Ng, L. V. Lakshmanan, J. Han, and A. Pang. Exploratory Mining and
Pruning Optimization of Constrained Association Rules. In Proc. ACM SIG-

MOD’98, 13–24, Seattle, USA, 1998.
15. N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient Mining of Associ-

ation Rules Using Closed Itemset Lattices. Information Systems, 24(1):25–46,
1999.

