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Abstract. Recently, different works proposed a new way to mine pat-
terns in databases with pathological size. For example, experiments in
genome biology usually provide databases with thousands of attributes
(genes) but only tens of objects (experiments). In this case, mining the
“transposed” database runs through a smaller search space, and the Ga-
lois connection allows to infer the closed patterns of the original database.
We focus here on constrained pattern mining for those unusual databases
and give a theoretical framework for database and constraint transpo-
sition. We discuss the properties of constraint transposition and look
into classical constraints. We then address the problem of generating the
closed patterns of the original database satisfying the constraint, starting
from those mined in the “transposed” database. Finally, we show how to
generate all the patterns satisfying the constraint from the closed ones.

1 Introduction

Frequent pattern mining is now well mastered, but these patterns, like associa-
tion rules, reveal to be too numerous for the experts and very expensive to com-
pute. They have to be filtered or constrained. However, mining and constraining
have to be done jointly (pushing the constraint) in order to avoid combinatorial
explosion [14]. Mining under complex constraint has become today a hot topic
and the subject of numerous works (e.g., [14, 7, 16, 20, 10, 8]). Moreover, new do-
mains are interested in our applications, and data schemes vary consequently. In
genome biology, biological experiments are very expensive and time consuming.
Therefore, only a small number of these experiments can be processed. However,
thanks to new devices (such as biochips), experiments can provide the measure-
ments of the activity of thousands of genes. This leads to databases with lots of
columns (the genes) and few rows (the experiments).

Numerous works present efficient algorithms which mine the patterns satis-
fying a user defined constraint in large databases. This constraint can combine
minimum and maximum frequency threshold together with other syntactical
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constraints. These algorithms are designed for databases with up to several mil-
lions of rows. However, their complexity is exponential in the number of columns
and thus they are not suited for databases with too many columns, like those
encountered in genome biology.

Recently, two propositions were done to solve this problem: instead of mining
the original database, these algorithms work on the “transposed” database, i.e.,
columns of the original database become rows in the “transposed” database and
rows becomes columns (this is indeed the same database but with a different rep-
resentation). Therefore the “transposed” database has significantly less columns
than the original one. The CARPENTER algorithm [18] is specifically designed
for mining the frequent closed patterns, and our proposition [23, 24] uses a clas-
sical algorithm for mining closed patterns with a monotonic (or anti-monotonic)
constraint. Both approaches use the transposition principle, however the problem
of mining under constraints is not fully studied, specially for complex constraints
(i.e., conjunction and disjunction of simple constraints).

In this paper, we study this problem from a theoretical point of view. Our
aim is to use classical algorithms (constrained pattern mining algorithms or
closed patterns mining algorithms) in the “transposed” database and to use
their output to regenerate patterns of the original database instead of directly
mining in the original database.
There are several interesting questions which we will therefore try to answer:

1. What kind of information can be gathered in the “transposed” database on
the patterns of the original database?

2. Is it possible to “transpose” the constraints? I.e., given a database and a
constraint, is it possible to find a “transposed” constraint such that mining
the “transposed” database with the “transposed” constraint gives informa-
tion about the patterns which satisfy the original constraint in the original
database?

3. How can we regenerate the closed patterns in the original database from the
patterns extracted in the “transposed” database?

4. How can we generate all the itemsets satisfying a constraint using the ex-
tracted closed patterns.

These questions will be addressed respectively in Sec. 2, 3, 4 and 5.
The organization of the paper is as follows: we start Sec. 2 by recalling some

usual definitions related to pattern mining and Galois connection. Then we show
in Sec. 3 how to transpose usual and complex constraints. Section 4 is a com-
plete discussion about mining constrained closed patterns using the “transposed”
database and in Sec. 5 we show how to use this to compute all (i.e., not only
closed) the patterns satisfying a constraint. Finally Sec. 6 is a short conclusion.

2 Definitions

To avoid confusion between rows (or columns) of the original database and rows
(columns) of the “transposed” database, we define a database as a relation be-
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Table 1. Original and transposed representations of a database. The attributes are
A = {a1, a2, a3, a4} and the objects are O = {o1, o2, o3}. We use a string notation for
object sets or itemsets, e.g., a1a3a4 denotes the itemset {a1, a3, a4} and o2o3 denotes
the object set {o2, o3}. This dataset is used in all the examples

object attribute pattern
o1 a1a2a3

o2 a1a2a3

o3 a2a3a4

attribute object pattern
a1 o1o2

a2 o1o2o3

a3 o1o2o3

a4 o3

tween two sets : a set of attributes and a set of objects. The set of attributes
(or items) is denoted A and the set of objects is O. The attribute space 2A

is the collection of the subsets of A and the object space 2O is the collection
of the subsets of O. An attribute set (or itemset or attribute pattern) is a
subset of A. An object set (or object pattern) is a subset of O. A database
is a subset of A × O.

In this paper we consider that the database has more attributes than ob-
jects and that we are interested in mining attributes sets. The database can be
represented as an adjacency matrix where objects are rows and attributes are
columns (original representation) or where objects are columns and attributes
are rows (transposed representation).

2.1 Constraints

Given a database, a constraint C on an attribute set (resp. object set) is a
boolean function on 2A (resp. on 2O). Many constraints have been used in pre-
vious works. One of the most popular is the minimum frequency constraint which
requires an itemset to be present in more than a fixed number of objects. But
we can also be interested in the opposite, i.e., the maximum frequency con-
straint. Other constraints are related to Galois connection (see Sect. 2.2), such
as closed [2] patterns, free [6], contextual free [7] or key [2] patterns, or even
non-derivable [9] or emergent [25, 11] patterns. There are also syntactical con-
straints, when one focuses only on itemsets containing a fixed pattern (superset
constraint), contained in a fixed pattern (subset constraint), etc. Finally, when
a numerical value (such as a price) is associated to items, aggregate functions
such as sum, average, min, max, etc. can be used in constraints [16].

A constraint C is anti-monotonic if ∀A, B (A ⊆ B ∧ C(B)) =⇒ C(A).
A constraint C is monotonic if ∀A, B (A ⊆ B ∧ C(A)) =⇒ C(B). In both
definitions, A and B can be attribute sets or object sets. The frequency constraint
is anti-monotonic, like the subset constraint. The anti-monotonicity property is
important, because level-wise mining algorithms most of time use it to prune
the search space. Indeed, when a pattern does not satisfy the constraint, its
specialization neither and can be pruned [1].

Simple composition of constraints has good properties: the conjunction or
the disjunction of two anti-monotonic (resp. monotonic) constraints is anti-
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monotonic (resp. monotonic). The negation of an anti-monotonic (resp. mono-
tonic) constraints is monotonic (resp. anti-monotonic).

2.2 Galois Connection

The main idea underlying our work is to use the strong connection between
the itemset lattice 2A and the object lattice 2O called the Galois connection.
This connection was first used in pattern mining when closed itemset mining
algorithms were proposed [19], while it relates to many works in concept learn-
ing [17, 27].
Given a database db, the Galois operators f and g are defined as:

– f , called intension, is a function from 2O to 2A defined by

f(O) = {a ∈ A | ∀o ∈ O, (a, o) ∈ db} ,

– g, called extension, is a function from 2A to 2O defined by

g(A) = {o ∈ O | ∀a ∈ A, (a, o) ∈ db} .

Given an itemset A, g(A) is also called the support set of A in db. It is also
the set of objects for which all the attributes of A are true. The frequency of
A is |g(A)| and is denoted F(A).

Both functions enable us to link the attribute space to the object space.
However, since both spaces have not the same cardinality, there is no one to
one mapping between them1. This means that several itemsets can have the
same image in the object space and conversely. We thus define two equivalence
relations ra and ro on 2O and 2A:

– if A and B are two itemsets, A ra B if g(A) = g(B),
– if O and P are two sets of objects, O ro P if f(O) = f(P ).

In every equivalence class, there is a particular element: the largest (for inclu-
sion) element of an equivalence class is unique and is called a closed attribute
set (for ra ) or a closed object set (for ro ).

The Galois operators f and g lead by composition to two closure operators,
namely h = f ◦g and h′ = g ◦f . They relate to lattice or hypergraph theory and
have good properties [26]. The closed sets are then the fixed points of the closure
operators and the closure of a set is the closed set of its equivalence class. In the
following we will indifferently refer to h and h′ with the notation cl. We denote
Cclose the constraint which is satisfied by the itemsets or the object sets which
are closed.

If two itemsets are equivalent, their images are equal in the object space.
There is therefore no mean to distinguish between them if the mining of the
closed patterns is performed in the object space. So, by using the Galois con-
nection to perform the search in the object space instead of the attribute space,

1 This is fortunate since the whole point of transposition is to explore a smaller space.
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O/ O/

a1a2a4

a1a4

a3 a2

a3a4 a2a4

a4

a1a3 a1a2

a1

a1a2a3

a2a3

a2a3a4 a1a3a4

a1a2a3a4

(b)(a)

f

g

o2 o3

o1o2 o2o3

o1

o1o2o3

o1o3

Fig. 1. The equivalence classes for ra in the itemset lattice (a) and for ro in the
object set lattice (b) built on the database of Tab. 1. The closed sets are in bold face.
The arrows represent the f and g operators between the a1a2a3 and o1o2 equivalence
classes. The dotted arrows represent the closure operators h and h′

we will gather information about the equivalence classes of ra (identified by
their closed pattern), not about all individual itemsets. This answers the first
question of the introduction, i.e. what kind of information can be gathered in
the transposed database on the patterns of the original database. At best, we
will only be able to discover closed patterns.

Property 1. Some properties of f and g.

– f and g are decreasing w.r.t. the inclusion order: if A ⊆ B then g(B) ⊆ g(A)
(resp. f(B) ⊆ f(A))

– If A is an itemset and O an object set, then g(A) is a closed object set and
f(O) a closed itemset

– fixed point: A is closed if and only if f(g(A)) = cl(A) = A (resp. g(f(O)) =
cl(O) = O)

– f ◦ g ◦ f = f and g ◦ f ◦ g = g
– A ⊆ cl(A)

In the Galois connection framework, the association of a closed pattern of
attributes and the corresponding closed pattern of objects is called a concept.
Concept learning [17, 27] has led to classification tasks and clustering processes.
We use this connection in this article through the link it provides between the
search spaces 2A and 2O.

Example 1. In Fig. 1, the closed objects sets are ∅, o3, o1o2, and o1o2o3. The
closed itemsets are a2a3, a2a3a4, a1a2a3 and a1a2a3a4. Since g(o1o2) = a1a2a3
and f(a1a2a3) = o1o2, (a1a2a3, o1o2) is a concept. The others are (a2a3, o1o2o3),
(a2a3a4, o3), (a1a2a3a4, ∅).

Closed sets of attributes are very useful for algorithms with support con-
straint, because they share, as maximal element of the equivalence class ra ,
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the same frequency with all patterns in the class. Closed set mining is now well
known [12], and frequent closed patterns are known to be less numerous than
frequent patterns [5, 9]. Today’s approaches relate to closed sets with constraints
mining [3]. These patterns are good candidates for constituting relevant concepts,
which associate at the same time the attributes and the objects. For example,
biologists want to constraint their search to attribute patterns containing some
specific genes, with a specified maximum length. They also will be interested in
analyzing the other part of the concept. We specifically address here the problem
of constrained closed mining in databases with more attributes than objects.

3 Constraint Transposition

Most algorithms extracting closed patterns are search algorithms. The size of
the search space strongly determines their performance [12]. In our context, the
object space 2O is smaller than the attribute space 2A. We therefore choose to
search the closed patterns in the smaller space (2O) by transposing the database.
In order to mine under constraint, we study in this section how we can adapt con-
straints to the new transposed database, i.e., how we can transpose constraints.
We will therefore answer question 2 of the introduction.

3.1 Definition and Properties

Given an itemset constraint C, we want to extract the collection I of itemsets,
I = {A ⊆ A | C(A)}. Therefore, we want to find in the transposed database a
collection T of object sets (if it exists) such that the image by f of this collection
is I, i.e., {f(O) | O ∈ T} = I. Since f(O) is always a closed itemset, this is only
possible if the collection I contains only closed itemsets (i.e., if the constraint
C includes the Cclose constraint). In this case, a solution for T is the collection
{O ⊆ O | C(f(O))} which leads to the following definition of a transposed con-
straint:

Definition 1 (Transposed Constraint). Given a constraint C, we define the
transposed constraint tC on a closed pattern O of objects as:

tC(O) = C(f(O)).

Example 2. Consider the itemset constraint C(A) = (a1 ∈ A). Its transposed
constraint is (by definition) tC(O) = (a1 ∈ f(O)). Using the dataset of Tab. 1,
the object sets that satisfy tC are T = {o1, o2, o1o2, o1o3, o2o3, o1o2o3}. If we
compute {f(O) | O ∈ T}, we get {a1a2a3, a1a2a3a4} which are exactly the closed
itemsets that satisfy C. Theorem 1 will show that this is always the case.

It is interesting to study the effect of transposition w.r.t. the monotonicity
or anti-monotonicity of constraints, since many mining algorithms rely on them
for efficient pruning:
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Proposition 1. If a constraint C is monotonic (resp. anti-monotonic), the trans-
posed constraint tC is anti-monotonic (resp. monotonic).

Proof: f and g are decreasing (Prop. 1), which inverts monotonicity and
anti-monotonicity. �

Since we also want to deal with complex constraints (i.e., constraints built
with elementary constraints using boolean operators), we need the following:

Proposition 2. If C and C′ are two constraints then:

t(C ∧ C′) = tC ∧ tC′

t(C ∨ C′) = tC ∨ tC′

t(¬C) = ¬tC
Proof: For the conjunction: t(C ∧ C′)(O) = (C ∧ C′)(f(O)) = C(f(O)) ∧
C′(f(O)) = (tC ∧ tC′)(O). The proof is similar for the disjunction and the
negation. �

Many algorithms deal with conjunctions of anti-monotonic and monotonic
constraints. The two last propositions mean that these algorithms can be used
with the transposed constraints since the transposed constraint of the conjunc-
tion of a monotonic and an anti-monotonic constraint is the conjunction of a
monotonic and an anti-monotonic constraint! The last proposition also helps in
building the transposition of a composed constraint. It is useful for the algebrai-
sation [22] of the constraint mining problem, where constraints are decomposed
in disjunctions and conjunctions of elementary constraints.

3.2 Transposed Constraints of Some Classical Constraints

In the previous section, we gave the definition of the transposed constraint. In
this definition (tC(O) = C(f(O))), in order to test the transposed constraint on
an object set O, it is necessary to compute f(O) (to come back in the attribute
space) and then to test C. This means that a mining algorithm using this con-
straint must maintain a dual context, i.e., it must maintain for each object set O
the corresponding attribute set f(O). Some algorithms already do this, for in-
stance algorithms which use the so called vertical representation of the database
(like CHARM [28]). For some classical constraints however, the transposed con-
straint can be rewritten in order to avoid the use of f(O). In this section, we
review several classical constraints and try to find a simple expression of their
transposed constraint in the object space.

Let us first consider the minimum frequency constraint: the transposed con-
straint of Cγ-freq(A) = (F(A) > γ) is, by definition 1, tCγ-freq(O) = (F(f(O)) >
γ). By definition of frequency, F(f(O)) = |g(f(O))| = |cl(O)| and if O is a closed
object set, cl(O) = O and therefore tCγ-freq(O) = (|O| > γ). Finally, the trans-
posed constraint of the minimum frequency constraint is the “minimum size”
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constraint. The CARPENTER [18] algorithm uses this property and mines the
closed patterns in a divide-and-conquer strategy, stopping when the length of
the object set drops below the threshold.

The next two propositions give the transposed constraints of two other clas-
sical constraints : the subset and superset constraints:

Proposition 3 (Subset Constraint Transposition). Let C⊆E be the con-
straint defined by: C⊆E(A) = (A ⊆ E) where E is a constant itemset. Then if E
is closed (O is an object set):

tC⊆E(O) ⇔ g(E) ⊆ cl(O)

and if E is not closed
tC⊆E(O) ⇒ g(E) ⊆ cl(O).

Proof: tC⊆E(O) ⇔ C⊆E(f(O)) ⇔ (f(O) ⊆ E) ⇒ (g(E) ⊆ g(f(O))) ⇔
(g(E) ⊆ cl(O)). Conversely (if E is closed): (g(E) ⊆ g(f(O))) ⇒ (f(O) ⊆
cl(E)) ⇒ (f(O) ⊆ E). �

Proposition 4 (Superset Constraint Transposition). Let C⊇E be the con-
straint defined by: C⊇E(A) = (A ⊇ E) where E is a constant itemset. Then:

tC⊇E(O) ⇔ g(E) ⊇ cl(O).

Proof: tC(O) ⇔ (E ⊆ f(O)) ⇒ (g(f(O)) ⊆ g(E)) ⇔ (cl(O) ⊆ g(E)).
Conversely, (g(f(O)) ⊆ g(E) ⇒ (fg(E) ⊆ fgf(O)) ⇒ fg(E) ⊆ f(O) ⇒
cl(E) ⊆ f(O) ⇒ E ⊆ f(O). �

These two syntactical constraints are interesting because they can be used
to construct many other kind of constraints. In fact, all syntactical constraints
can be build on top of these using conjunctions, disjunctions and negations.
With the proposition 2, it is then possible to compute the transposition of many
syntactical constraints. Besides, these constraints have been identified in [13, 4]
to formalize dataset reduction techniques.

Table 2 gives the transposed constraints of several classical constraints if
the object set O is closed (this is not an important restriction since we will
use only closed itemsets extraction algorithms). These transposed constraints
are easily obtained using the two previous propositions on the superset and the
subset constraints and Prop. 2. For instance, if C(A) = (A ∩ E �= ∅), this can be
rewritten A �⊆ E (E denotes the complement of E, i.e. A\E) and then ¬(A ⊆ E).
The transposed constraint is therefore, using Prop. 2 and 3, ¬(g(E) ⊆ O) (if E
is closed) and finally g(E) �⊆ O. If E is not closed, then we write E = {e1, ..., en}
and we rewrite the constraint C(A) = (e1 ∈ A ∨ e2 ∈ A ∨ ... ∨ en ∈ A) and
then, using Prop. 2 and 4, we obtain the transposed constraint tC(O) = (O ⊆
g(e1) ∨ ... ∨ O ⊆ g(en)). These expressions are interesting since they do not
involve the computation of f(O). Instead, there are g(E) or g(ei) ... However,
since E is constant, these values need to be computed only once (during the first
database pass, for instance).
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Table 2. Transposed constraints of some classical constraints. A is a variable closed
itemset, E = {e1, e2, ..., en} a constant itemset, O a variable closed object set and
E = A \ E = {f1, f2, ..., fm}

Itemset constraint C(A) Transposed constraint tC(O)
F(A) θ α |O| θ α
A ⊆ E if E is closed: g(E) ⊆ O

else: O �⊆ g(f1) ∧ ... ∧ O �⊆ g(fm)
E ⊆ A O ⊆ g(E)
A �⊆ E if E is closed: g(E) �⊆ O

else: O ⊆ g(f1) ∨ ... ∨ O ⊆ g(fm)
E �⊆ A O �⊆ g(E)

A ∩ E = ∅ if E is closed: g(E) ⊆ O
else: O �⊆ g(e1) ∧ ... ∧ O �⊆ g(en)

A ∩ E �= ∅ if E is closed: g(E) �⊆ O
else: O ⊆ g(e1) ∨ ... ∨ O ⊆ g(en)

SUM(A) θ α Fp(O) θ α
MIN(A) θ α see text
MAX(A) θ α see text

θ ∈ {<, >, ≤, ≥}

Example 3. We show in this example how to compute the transposed constraints
with the database of Tab. 1. Let the itemset constraint C(A) = (A∩a1a4 �= ∅). In
the database of Tab. 1, the itemset a1a4 = a2a3 is closed. Therefore, the trans-
posed constraint is (Tab. 2) tC(O) = (g(a2a3) �⊆ O). Since g(a2a3) = o1o2o3,
tC(O) = (o1o2o3 �⊆ O). The closed object sets that satisfy this constraint are T =
{∅, o1o2, o3}. If we apply f to go back to the itemset space: {f(O) | O ∈ T} =
{a1a2a3a4, a1a2a3, a2a3a4} which are, as expected (and proved by Th. 1), the
closed itemset which satisfy C.

Consider now the constraint C(A) = (A∩a1a2 �= ∅). In this case, a1a2 = a3a4
is not closed. Therefore, we use the second expression in Tab. 2 to compute
its transposition. tC(O) = (O ⊆ g(a1) ∨ O ⊆ g(a2)). Since g(a1) = o1o2 and
g(a2) = o1o2o3, tC(O) = (O ⊆ o1o2 ∨ O ⊆ o1o2o3) which can be simplified in
tC(O) = (O ⊆ o1o2o3). All the closed object sets satisfy this constraint tC, which
is not surprising since all the closed itemsets satisfy C.

Our last example is the constraint C(A) = (|A ∩ a1a2a4| ≥ 2). It can be
rewritten C(A) = ((a1a2 ⊆ A) ∨ (a1a4 ⊆ A) ∨ (a2a4 ⊆ A)). Using Prop. 2 and
Tab. 2 we get tC(O) = ((O ⊆ g(a1a2)) ∨ (O ⊆ g(a1a4)) ∨ (O ⊆ g(a2a4))) which
is tC(O) = ((O ⊆ o1o2) ∨ (O ⊆ ∅) ∨ (O ⊆ o3)). The closed object sets satisfying
tC are T = {∅, o1o2, o3} and {f(O) | O ∈ T} = {a1a2a3a4, a1a2a3, a2a3a4}.

Other interesting constraints include aggregate constraints [16]. If a numerical
value a.v is associated to each attribute a ∈ A, we can define constraints of the
form SUM(A) θ α for several aggregate operators such as SUM, MIN, MAX or
AVG, where θ ∈ {<, >,≤, ≥} and α is a numerical value. In this case, SUM(A)
denotes the sum of all a.v for all attributes a in A.
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The constraints MIN(A) θ α and MAX(A) θ α are special cases of the con-
straints of Tab. 2. For instance, if supα = {a ∈ A | a.v > α} then MIN(A) > α
is exactly A ⊆ supα and MIN(A) ≤ α is A �⊆ supα. The same kind of rela-
tion holds for MAX operator: MAX(A) > α is equivalent to A ∩ supα �= ∅ and
MAX(A) ≤ α is equivalent to A ∩ supα = ∅. In this case, since α is a constant,
the set supα can be pre-computed.

The constraints AVG(A) θ α and SUM(A) θ α are more difficult. Indeed, we
only found one expression (without f(O)) for the transposition of SUM(A) θ α.
Its transposition is tC(O) = (SUM(f(O)) θ α). In the database, f(O) is a set of
attributes, so in the transposed database, it is a set of rows and O is a set of
columns. The values a.v are attached to rows of the transposed database, and
SUM(f(O)) is the sum of these values for the rows containing O. Therefore,
SUM(f(O)) is a pondered frequency of O (in the transposed database) where
each row a, containing O, contributes for a.v in the total (we denote this pon-
dered frequency by Fp(O)). It is easy to adapt classical algorithms to count this
pondered frequency. Its computation is the same as the classical frequency ex-
cept that each row containing the counted itemset does contribute with a value
different from 1 to the frequency.

4 Closed Itemsets Mining

In a previous work [23] we showed the complementarity of the set of concepts
mined in the database, with constraining the attribute patterns, and the set
of concepts mined in the transposed database with the negation of the trans-
posed constraint, when the original constraint is anti-monotonic. The transposed
constraint had to be negated in order to ensure the anti-monotonicity of the
constraint used by the algorithm. This is important because we can keep usual
mining algorithms which deal with anti-monotonic constraint and apply them
in the transposed database with the negation of the transposed constraint. We
also showed [24] a specific way of mining under monotonic constraint, by sim-
ply mining the transposed database with the transposed constraint (which is
anti-monotonic). In this section, we generalize these results for more general
constraints.

We define the constrained closed itemset mining problem: Given a
database db and a constraint C, we want to extract all the closed itemsets (and
their frequencies) satisfying the constraint C in the database db. More formally,
we want to compute the collection:

{(A, F(A, db)) | C(A, db) ∧ Cclose(A, db)} .

The next theorem shows how to compute the above solution set using the
closed object patterns extracted in the transposed database, with the help of the
transposed constraint.

Theorem 1.

{A | C(A) ∧ Cclose(A)} =
{
f(O) | tC(O) ∧ Cclose(O)

}
.
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Proof: By def. 1, {f(O) | tC(O) ∧ Cclose(O)} = {f(O) | C(f(O)) ∧ Cclose(O)}
= {A | ∃O s.t. C(A) ∧ A = f(O)} = {A | C(A) ∧ Cclose(A)}. �

This theorem means that if we extract the collection of all closed object
patterns satisfying tC in the transposed database, then we can get all the closed
patterns satisfying C by computing f(O) for all the closed object patterns. The
fact that we only need the closed object patterns and not all the object patterns is
very interesting since the closed patterns are less numerous and can be extracted
more efficiently (see CHARM [28], CARPENTER [18], CLOSET[21] or [7]). The
strategy, which we propose for computing the solution of the constraint closed
itemset mining problem, is therefore:

1. Compute the transposed constraint tC using Tab. 2 and Prop. 2. This step
can involve the computation of some constant object sets g(E) used in the
transposed constraint.

2. Use one of the known algorithms to extract the constrained closed sets of
the transposed database. Most closed set extraction algorithms do not use
constraints (like CLOSE, CLOSET or CARPENTER). However, it is not
difficult to integrate them (by adding more pruning steps) for monotonic or
anti-monotonic constraints. In [7], another algorithm to extract constrained
closed sets is presented.

3. Compute f(O) for each extracted closed object pattern. In fact, every algo-
rithm already computes this when counting the frequency2 of O, which is
|f(O)|. The frequency of f(O) (in the original database) is simply the size
of O and can therefore be provided without any access to the database.

The first and third steps can indeed be integrated in the core of the mining
algorithm, as it is done in the CARPENTER algorithm (but only with the
frequency constraint).

Finally, this strategy shows how to perform constrained closed itemset min-
ing by processing all the computations in the transposed database, and using
classical algorithms.

5 Itemsets Mining

In this section, we study how to extract all the itemsets that satisfy a user
constraint (and not only the closed ones). We define the constrained itemset
mining problem : Given a database db and a constraint C, we want to extract
all the itemsets (and their frequencies) satisfying the constraint C in the database
db. More formally, we want to compute the collection:

{(A, F(A, db)) | C(A, db)} .

In the previous section, we gave a strategy to compute the closed itemsets
satisfying a constraint. We will of course make use of this strategy. Solving the

2 This is the frequency in the transposed database.
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constrained itemset mining problem will involve three steps : Given a database
db and a constraint C,

1. find a constraint C′,
2. compute the collection {(A, F(A, db)) | C′(A, db) ∧ Cclose(A, db)} of closed sets

satisfying C′ using the strategy of Sec. 4,
3. compute the collection {(A, F(A, db)) | C(A, db)} of all the itemsets satisfying

C from the closed ones satisfying C′.

We will study the first step in the next subsection and the third one in
Sec. 5.2, but first we will show why it is necessary to introduce a new constraint
C′. Indeed, it is not always possible to compute all the itemsets that satisfy C
from the closed sets that satisfy C. Let us first recall how the third step is done
in the classical case where C is the frequency constraint [19]:

The main used property is that all the itemsets of an equivalence class have
the same frequency than the closed itemset of the class. Therefore, if we know
the frequency of the closed itemsets, it is possible to deduce the frequency of
non-closed itemsets provided we are able to know in which class they belong.
The regeneration algorithm of [19] use a top down approach. Starting from the
largest frequent closed itemsets, it generates their subsets and assign them their
frequencies, until all the itemsets have been generated.

Now, assume that the constraint C is not the frequency constraint and that we
have computed all the closed itemsets (and their frequencies) that satisfy C. If an
itemset satisfies C, it is possible that its closure does not satisfies it. In this case,
it is not possible to compute the frequency of this itemset from the collection
of the closed itemsets that satisfy C (this is illustrated in Fig. 2). Finally, the
collection of the closed itemsets satisfying C is not sufficient to generate the
non-closed itemsets. In the next section, we show how the constraint C can be
relaxed to enable the generation all the non-closed itemsets satisfying it.

5.1 Relaxation of the Constraint

In order to be able to generate all the itemsets from the closed ones, it is necessary
to have at least the collection of closed itemsets of all the equivalence classes
that contain an itemset satisfying the constraint C. This collection is also the
collection of the closures of all itemsets satisfying C : {cl(A) | C(A, db)}.

We must therefore find a constraint C′ such that {cl(A) | C(A, db)} is included
in {A | C′(A, db) ∧ Cclose(A)}. We call such a C′ constraint a good relaxation
of C (see Fig. 3). If we have an equality instead of the inclusion, we call C′ an
optimal relaxation of C. For example, the constant “true” constraint (which
is true on all itemset) is a good relaxation of any constraint, however it is not
very interesting since it will not provide any pruning opportunity during the
extraction of step 2.

If the closed itemsets (and their frequencies) satisfying an optimal relaxation
of C are computed in step 2, we will have enough information for regenerating
all itemsets satisfying C in step 3. However it is not always possible to find such
an optimal relaxation. In this case, we can still use a good relaxation in step 2.
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Fig. 2. The dots represent itemsets, the x are closed itemsets, the lines enclose the
equivalence classes. The itemsets inside the region delimited by the dashed line satisfy
the constraint C and the others do not. The closed sets satisfying C are the closed sets
of classes 3, 4 and 5. They will enable to generate the itemsets of these three classes.
However, to get the two itemsets of class 2, we need the closed itemset of this class
which does not satisfy C. Therefore, in this case, having the closed itemsets satisfying
C is not enough to generate all itemsets satisfying C
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Fig. 3. An optimal relaxation of C. The constraint C is represented by the solid line
and an optimal relaxation is represented by the dashed line

In this case, some superfluous closed itemsets will be present in the collection
and will have to be filtered out in step 3.

We will now give optimal relaxation for some classical constraints, and we
start with two trivial cases:
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Proposition 5. The optimal relaxation of a monotonic constraint is the con-
straint itself and the optimal relaxation of the frequency constraint is the fre-
quency constraint itself.

Proof: Let C be a monotonic constraint or a frequency constraint. We only
have to prove that if an itemset A satisfy C then cl(A) also. If C is monotonic,
this is true since S ⊆ cl(S) (Prop. 1. If C is a minimum frequency constraint,
it is true because A and cl(A) have the same frequency. �

The next proposition is used to compute the relaxation of a complex con-
straint from the relaxation of simple constraints.

Proposition 6. If C1 and C2 are two constraints and C′
1 and C′

2 are optimal
relaxation of them, then :

– C′
1 ∨ C′

2 is an optimal relaxation of C1 ∨ C2 and
– C′

1 ∧ C′
2 is a good relaxation of C1 ∧ C2.

Proof: A constraint C′ is a good relaxation of a constraint C if and only if
∀A, C(A) ⇒ C′(cl(A)). To prove that it is an optimal relaxation, we must
also prove that if A is closed and satisfies C′ then there exists an itemset B
satisfying C such that cl(B) = A (cf. definitions). We will use this two facts
in our proofs.

Let A be an itemset satisfying C1 ∧ C2. This means that A satisfies C1
and C2. Therefore, cl(A) satisfies C′

1 and C′
2, i.e., cl(A) satisfies C′

1 ∧ C′
2.This

means that C′
1 ∧ C′

2 is a good relaxation of C1 ∧ C2.
We can prove similarly that C′

1 ∨ C′
2 is a good relaxation of C1 ∨ C2. Let

us now prove that it is optimal: Let A be a closed itemset satisfying C′
1 ∨C′

2.
Then A satisfies C′

1 or C′
2, suppose that it satisfies C′

1. Since C′
1 is an optimal

relaxation of C1, there exists B satisfying C1 such that cl(B) = A. Therefore
B satisfies C1 ∨ C2 and cl(B) = A. �

We found no relaxation for the negation of a constraint but this is not a
problem. If the constraint is simple (i.e., in Tab. 2) its negation is also in the
table and if it is complex, then we can “push” the negation into the constraint
as shown in the next example.

Example 4. Let C(A) = (¬(((F(A) > 3) ∧ (A �⊆ E)) ∨ (A ∩ F = ∅))) where
E and F are two constant itemsets. We can push the negation and we get:
C(A) = ((¬(F(A) > 3) ∨ ¬(A �⊆ E)) ∧ ¬(A ∩ F = ∅)), and finally :

C(A) = (((F(A) ≤ 3) ∨ (A ⊆ E)) ∧ (A ∩ F �= ∅)).

Then with Prop. 5, 6 and Tab. 3, we can compute a good relaxation C′ of C:

C′(A) = (((F(A) ≤ 3) ∨ (A ⊆ cl(E))) ∧ (A ∩ F �= ∅)).

Table 3 gives good relaxation of the other constraints of Tab. 2 which are
not covered by the previous proposition (i.e., which are not monotonic) except
for the non-monotonic constraints involving SUM for which we did not find any
interesting (i.e., other than the constant true constraint) good relaxation.
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Table 3. Good relaxation of some classical constraints. A is a variable closed itemset,
E = {e1, e2, ..., en} a constant itemset

Itemset constraint C(A) Good relaxation C′(A)
A ⊆ E A ⊆ cl(E)
E �⊆ A A ⊆ cl(e1) ∨ A ⊆ cl(e2) ∨ ... ∨ A ⊆ cl(en)

A ∩ E = ∅ A ⊆ cl(E)
MIN(A) > α A ⊆ cl(supα)
MAX(A) < α A ⊆ cl(supeqα)

Proof: We prove here the results given in Tab. 3.
C(A) = (A ⊆ E), C′(A) = (A ⊆ cl(E)): If A ⊆ E then cl(A) ⊆ cl(E). This
means that C(A) ⇒ C′(cl(A)) therefore C′ is a good relaxation of C.

C(A) = (A ∩ E = ∅): C can be rewritten C(A) = (A ⊆ E) and the previous
case applies with E instead of E.

C(A) = (E �⊆ A): If E = {e1, e2, ..., en}, this constraint can be rewritten
{e1} �⊆ A∨{e2} �⊆ A∨. . .∨{en} �⊆ A which is also A ⊆ {e1}∨. . .∨A ⊆ {en}.
Then the first case and Prop 6 give the result.

C(A) = (MIN(A) > α) and C(A) = (MAX(A) < α): C(A) = (MIN(A) > α)
can be rewritten A ⊆ supα with supα = {a ∈ A | a.v > α} and we are in
the first case. C(A) = (MAX(A) < α) can be rewritten A∩ supeqα = ∅ with
supeqα = {a ∈ A | a.v ≥ α} and we are in the second case. �

5.2 Regeneration

Given a database db and a constraint C, we suppose in this section that a col-
lection {(A, F(A, db)) | C′(A, db) ∧ Cclose(A, db)} of closed itemsets (and their fre-
quencies) satisfying a good relaxation C′ of C is available. The aim is to compute
the collection {(A, F(A, db)) | C(A, db)} of all itemset satisfying C (and their
frequencies).

If C is a minimum frequency constraint, C is an optimal relaxation of it-
self, therefore we take C′ = C. The regeneration algorithm is then the classical
algorithm 6 of [19]. We briefly recall this algorithm:

We suppose that the frequent closed itemsets (and their frequencies) of size i
are stored in the list Li for 0 < i ≤ k where k is the size of the longest frequent
closed itemset. At the end of the algorithm, each Li contains all the frequent
itemsets of size i and their frequencies.

1 for (i = k; i > 0; i − −)
2 forall A ∈ Li

3 forall subset B of size (i − 1) of A
4 if B �∈ Li−1
5 B.freq = A.freq
6 Li−1 = Li−1 ∪ {B}
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7 endif
8 end
9 end
10 end

If C′ is not the frequency constraint, this algorithm generates all the subsets
of the closed itemsets satisfying C′ and two problems arise:

1. Some of these itemsets do not satisfy C. For instance, in Fig. 3, all the
itemsets of classes 2, 3, 4, 5 and 6 are generated (because they are subsets of
closed itemsets that satisfy C′) and only those of classes 3 and 4 and some
of classes 2 and 5 satisfy C.

2. The frequency computed in step 5 of the above algorithm for B is correct
only if the closure of B is in the collection of the closed sets at the beginning
of the algorithm. If it is not, then this computed frequency is smaller than
the true frequency of B. In Fig. 3, this means that the computed frequency
of the itemsets of class 6 are not correct.

However, the good news is that all the itemsets satisfying C are generated
(because C′ is a good relaxation of C) and their computed frequencies are correct
(because their closures belongs to the Li at the beginning).

A last filtering phase is therefore necessary to filter out all the generated
itemsets that do not satisfy C. This phase can be pushed inside the above gen-
eration algorithm if the constraint C has good properties (particularly if it is a
conjunction of a monotonic part and an anti-monotonic one). However, we will
not detail this point here.

We are still facing a last problem: to test C(A), we can need F(A). However,
if C(A) is false, it is possible that the computed frequency of A is not correct.
To solve this problem, we propose the following strategy.

We assume that the constraint C is a Boolean formula built using the atomic
constraints listed in Tab. 2 and using the two operators ∧ and ∨ (if the ¬ operator
appears, it can be pushed inside the formula as shown in Ex. 4). Then, we rewrite
this constraint in disjunctive normal form (DNF), i.e., C = C1 ∨C2 ∨ . . .∨Cn with
Ci = Ami−1+1 ∧ . . . ∧ Ami where each Ai is a constraint listed in Tab. 2.

Now, consider an itemset A whose computed frequency is f (with f ≤ F(A)).
First, we consider all the conjunction Ci that we can compute, this include those
where F(A) does not appear and those of the form F(A) > α or F(A) < α
where α < f (in this two cases we can conclude since F(A) ≥ f). If one of them
is true, then C(A) is true and A is not filtered out.

If all of them are false, we have to consider the remaining conjunctions of the
form A1 ∧ . . . ∧ (F(A) > α) ∧ . . . with α ≥ f . If one of the Ai is false, then the
conjunction is false. If all are true, we suppose that F(A) > α: in this case C(A)
is true and therefore F(A) = f which contradict α ≥ f . Therefore, F(A) > α is
false and also the whole conjunction.

If it is still impossible to answer, it means that all the conjunctions are false,
and that there are conjunction of the form A1 ∧ . . . ∧ (F(A) < α) ∧ . . . with
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α ≥ f . In this case, it is not possible to know if C(A) is true without computing
the frequency F(A).

Finally, all this means that if there is no constraints of the form F(A) < α in
the DNF of C, we can do this last filtering phase efficiently. If it appears, then
the filtering phase can involve access to the database to compute the frequency
of some itemsets. Of course, all these frequency computation should be made in
one access to the database.

Example 5. In this example, we illustrate the complete process of the resolution
of the constrained itemset mining problem on two constraints (we still use the
dataset of Tab. 1):

C(A) = ((F(A) > 1) ∨ (a1 ∈ A)).

This constraint is its own optimal relaxation (cf. Prop. 5 and 6). According
to Tab. 2 and Prop. 2, its transposed constraint is tC(O) = ((|O| > 1) ∨ (O ⊆
g(a1))) and g(a1) = o1o2. The closed objects sets that satisfy this constraints
are T = {o1o2, o1o2o3, ∅}. If we apply f to go back to the itemset space:
{f(O) | O ∈ T} = {a1a2a3a4, a1a2a3, a2a3}. Since this set contains a1a2a3a4,
all the itemsets are generated. However, the generated frequency for the item-
sets of the class of a2a3a4 is 0. The other generated frequencies are correct. C
is in DNF with two simple constraints (F(A) > 1) and (a1 ∈ A). During the
filtering step, when considering the itemsets of a2a3a4’s class, the second con-
straint is always true. Since the generated frequency f is 0 and α is 1, α > f and
therefore these itemsets must be filtered out. Finally, the remaining itemsets are
exactly those that satisfy C.

C(A) = ((F(A) > 1) ∧ (A ⊆ a2a4)).

A good relaxation of C is C′(A) = ((F(A) > 1) ∧ (A ⊆ cl(a2a4))) = ((F(A) >
1)∧(A ⊆ a2a3a4)). The corresponding transposed constraint is tC′(O) = ((|O| >
1)∧(g(a2a3a4) ⊆ O)) = ((|O| > 1)∧(o3 ⊆ O)) since a2a3a4 is closed. The closed
objects sets that satisfy this constraints are T = {o1o2o3}. If we apply f to go
back to the itemset space: {f(O) | O ∈ T} = {a2a3}. Then all the subsets of
a2a3 are generated and only ∅ and a2 remains after the filtering step.

6 Conclusion

In order to mine constrained closed patterns in databases with more columns
than rows, we proposed a complete framework for the transposition: we gave
the expression in the transposed database of the transposition of many classical
constraints, and showed how to use existing closed set mining algorithms (with
few modifications) to mine in the transposed database.

Then we gave a strategy to use this framework to mine all the itemset satisfy-
ing a constraint when a constrained closed itemset mining algorithm is available.
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This strategy consists of three steps: generation of a relaxation of the constraint,
extraction of the closed itemset satisfying the relaxed constraint and, finally, gen-
eration of all the itemsets satisfying the original constraint.

We can therefore choose the smallest space between the object space and the
attribute space depending on the number of rows/columns in the database. Our
strategy gives new opportunities for the optimization of mining queries (also
called inductive queries) in contexts having a pathological size. This transposi-
tion principle could also be used for the optimization of sequences of queries: the
closed object sets computed in the transposed database during the evaluation of
previous queries can be stored in a cache and be re-used to speed up evaluation
of new queries in a fashion similar to [15].
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