Time-Area Tradeoff Improvement for
Montgomery Multiplication Implementation

F. BERNARD

Université Paris 8

Cryptarchi 2007, Juin 19-22
Le Hameau de I'Etoile

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary Modular Multiplication

Algorithm used and implementation
Design

Context

@ Modular multiplication : main operation in asymmetric
cryptography (Diffie-Hellmann, RSA, ECDSA)
@ Different sizes of moduli :
e Increasement of security level
e Protocol used : ECDSA (192-256 bits), RSA (1024-2048
bits)
@ Need of a “scalable” hardware for modular multiplication

@ Design must fit any chip area
@ Post-synthesis : computation with different sizes of moduli
must be possible

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary Modular Multiplication

Algorithm used and implementation
Design

Hardware constraints and specifications

@ Hardware constraints
e Technology (ASIC, FPGA)
o Area (Gates number, % area)
o Clock frequency
o ...
@ Specifications
e Computational time
o Scalability
e Resistant against side-channel attacks
o ...
@ Efficient implementation = find the best Time/area tradeoff
according to given constraints _
PARSE

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary Modular Multiplication

Algorithm used and implementation
Design

Montgomery modular reduction

@ Modular multiplication : A x B mod N
e 1 multiplication, 1 division
e Division is a costly operation
e Alternative : Modular multiplication without trial division, P.
Montgomery, 1985
@ Montgomery modular reduction
o N=Ny+ Nyr+---+ N,_1r"~"in radix representation
e R =r"prime with N
e Pre-computation of N = —N~' mod R
e Division by N replaced by simple right-shifts

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

i : mmar o
Previous Work : a summary Modular Multiplication

Algorithm used and implementation
Design

High-radix Montgomery algorithm

Algorithm used (r > 4) : MM, S
Inputs : A, B <2N — 1
— —n—1
Output : { g;g‘ﬁr_ 1 mod N
S <+ agB «— Multiplication-addition
Fori from 1to ndo
m; = SoN’ mod r — Low-part Multiplication
S = aB+ MNES 2 Multiplications-additions
Mn.1 = SoN' mod r — Low-part Multiplication
S = T8 Multiplication-addition
Return S

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

i : mmar o
Previous Work : a summary Modular Multiplication

Algorithm used and implementation
Design

Basic operations

@ Low-part multiplication : m; = soN’ mod r
@ Multiplication-addition : T« “M*S g a8+ T

o Loops

Classical multiplication Right Shifted multiplication

c=0 c=0

For j from 0 to ndo For j from 0 to ndo
P—ab+t+c and P—mN+s+c
sj < Lo(P) i1« Lo(P)
¢ — Hi(P) ¢ — Hi(P)

Spt1 =C th =8Snt1+C

@ 2 basic operations :
e m; = soN' mod r — Low-part multiplier
e P = xy + z+ ¢ — Multiplier-adder + adder ma

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary

(pp)

o

R

Pipelined

Multiplier-adder

Temp

«D-G

4T

FIFO

Adder

Carry[‘] [j S

I

Low-part Multiplier

Pipelined

5

F. BERNARD

Modular Multiplication
Algorithm used and implementation
Design

Output

Register stage 1

Logical gates
Register stage 2

Logical gates

Register stage pg

Logical gates

PARSE

Time-Area Tradeoff Improvement - Modular Multiplicat

i Work : mmar: sl
Previous Work : a summary Modular Multiplication

Algorithm used and implementation
Design

Practical utilisation

@ R=r"
@ Algorithmic Montgomery representation :
A= AR mod N

MM,S(A,R?) & { <

@ Stable by Montgomery multiplication : no intermediate
conversion _

@ Final output (S) in Montgomery representation and
S<2N -1

Property

IfS # N, then MM,S(1, §) convert S in its classical
representation S with0 < S < N — 1, without any condition on .
the modulus B&

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

i Work : mmar: sl
Previous Work : a summary Modular Multiplication

Algorithm used and implementation
Design

Results (Target : ASIC, O, 35, SMARTCARD)

@ Area : ~ 50kG (64 bits wordsize) (FIFO not taken into
account)
@ Time: T(n) = (n+1)(2n+ 3 + n + nj;) cycles
e |[N| =512 bits : n=8and T(n) = 180 cycles
e |[N| =1024 bits : n= 16 and T(n) = 595 cycles
@ Scalable Hardware :

@ Wordsize from 2 bits to > 128 bits
@ Maximal size of the FIFO memory

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previ Work : mmar o
evious Work : @ summary Modular Multiplication
Algorithm used and implementation
Design

Time-area tradeoff

1024 bits Time-area tradeoff

100000 T
'Gaubatz_1024_a’

‘Gaubatz_1024_b’
‘Gaubatz_1024_c’
‘Gaubatz_1024_d’
'Mixte1024_coeur.dat’

10000 |

Clock Cycles

1000 N

100
0.1 1 10 100 1000 3
Gates number (kG) m!

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplicati

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Time-Area Tradeoff improvement

Minimizing the different kinds of basic operations ?

@ 1 basic operation = 1 basic processing unit
@ Cell={basic processing units}
@ Only one cell is used in our hardware design

@ Minimizing the different kinds of basic processing units =
reducing hardware area

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Time-Area Tradeoff improvement

Removing the Low-part multiplication

@ Thomas Blum, 1999
“The Low-part multiplication can be removed.”
@ How?
e mi=SN modr (N = —Nj mod r)
o Idea : replace modulus N by N =N x N
e mj such that m;N + S'is divisible by r
mi=—-5N modr = —sy(N xN) modr
= Sy modr
@ m; determination = read the Least Significant Digit of the
output at iteration j — 1
@ Low-part multiplier is no longer needed _

Time-Area Tradeoff improvement

Hardware simplification

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

(Pp)

Aj E{j]gj] OuTm
Pipelined
Multiplier-adder
FIFO

[

Adder

Carry [j [j S

h

Lmvrpthmpuer

5

F. BERNARD

PARSE

Time-Area Tradeoff Improvement - Modular Multiplication

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Time-Area Tradeoff improvement

Hardware simplification

@ Hardware saving : ~ 30%
@ Doesn’t depend on modulus size

Pipelined

Multiplier-adder
FIFO

I

Adder

Carry [j [j S

F. BERNARD Time-Area Tradeoff Improvement - Modular Multipli

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Time-Area Tradeoff improvement

Additional computational time cost

@ New modulus used : N = N’ x N

@ Size : n+ 1 digits in radix r representation

o T(n)=(n+2)(2n+5+ Mz + M)

@ Additional computational time cost : 4n+ 7 cycles and a
relative additional cost of :

4n+7 0
T nEnts)”
@ Exemples :
Size (bits) 512 | 1024 | 2048

Additional cost (%) | 16.17 | 11.93 | 6.10

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Time-Area Tradeoff improvement

Time-area tradeoff

1024 bits Time-area tradeoff

100000 ‘ ‘
‘Gaubatz_1024_a' —+—
'Gaubatz_1024_b' ---x---
‘Gaubatz_1024_c’ ---*----
"Gaubatz_1024_d’ =)
& 'Mixte1024_coeur.dat’ —-—=-—
'LH1024_coeur.dat’ ---o----
10000 |
I
K<)
=}
>
O
X
[53
o
(@])
RN
1000 o % |
. AN
o} \\‘ N D‘
w ey
hol

0.1 1 10 100 1

Gates number (kG)

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplicati

The problem
Software solution

Final Correction
Hardware Solution

Final output : the problem

@ Output S such that :

® S=ABr—"2 mod N
e S<2N

® MM,,15(1,8) < N <IN
@ Problem : result is r times greater than the expected
result...

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

The problem
Software solution

Final Correction
Hardware Solution

Software solution

@ Only one correction step for a long modular exponentiation
process

@ Correction step might be done in software (division)

@ Good solution if there is a software division
implementation...

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

The problem
Software solution

Final Correction Hardware Solution

Hardware solution

@ Call to the old algorithm MM, S with modulus N and not
with N

Property
IfS+# N mod N then MM,,S(1,S) < N

@ need of a low part multiplication ?

@ Yes, but this operation will be performed by the
multiplier-adder

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Conclusion

Conclusion

@ Strategy : 1 basic operation = 1 basic processing unit
@ Only one cell used, with large datapath

@ Reducing number of different kinds of operation = strongly
reduces hardware area

@ New time-area tradeoff is better even if computational time
increases

@ Final correction step is possible in hardware

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

	Previous Work : a summary
	Modular Multiplication
	Algorithm used and implementation
	Design

	Time-Area Tradeoff improvement
	Strategy
	Removing the Low-part multiplication
	Repercussions on Time-area tradeoff

	Final Correction
	The problem
	Software solution
	Hardware Solution

	Conclusion

