
Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Time-Area Tradeoff Improvement for
Montgomery Multiplication Implementation

F. BERNARD

Université Paris 8

Cryptarchi 2007, Juin 19-22
Le Hameau de l’Etoile

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

Context

Modular multiplication : main operation in asymmetric
cryptography (Diffie-Hellmann, RSA, ECDSA)
Different sizes of moduli :

Increasement of security level
Protocol used : ECDSA (192-256 bits), RSA (1024-2048
bits)

Need of a “scalable” hardware for modular multiplication
1 Design must fit any chip area
2 Post-synthesis : computation with different sizes of moduli

must be possible

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

Hardware constraints and specifications

Hardware constraints
Technology (ASIC, FPGA)
Area (Gates number, % area)
Clock frequency
. . .

Specifications
Computational time
Scalability
Resistant against side-channel attacks
. . .

Efficient implementation = find the best Time/area tradeoff
according to given constraints

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

Montgomery modular reduction

Modular multiplication : A× B mod N
1 multiplication, 1 division
Division is a costly operation
Alternative : Modular multiplication without trial division, P.
Montgomery, 1985

Montgomery modular reduction
N = N0 + N1r + · · ·+ Nn−1rn−1 in radix representation
R = rn prime with N
Pre-computation of N ′ = −N−1 mod R
Division by N replaced by simple right-shifts

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

High-radix Montgomery algorithm

Algorithm used (r ≥ 4) : MMnS
Inputs : A, B ≤ 2N − 1

Output :
{

S ≡ ABr−n−1 mod N
S ≤ 2N − 1

S ← a0B ← Multiplication-addition
For i from 1 to n do

mi = s0N ′ mod r ← Low-part Multiplication
S = aiB + mi N+S

r ← 2 Multiplications-additions
mn+1 = s0N ′ mod r ← Low-part Multiplication
S =

mn+1N+S
r ← Multiplication-addition

Return S

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

Basic operations

Low-part multiplication : mi = s0N ′ mod r

Multiplication-addition : T ← mi N+S
r , S ← aiB + T

Loops

Classical multiplication
c = 0
For j from 0 to n do

P ← aibj + tj + c
sj ← Lo(P)
c ← Hi(P)

sn+1 = c

and

Right Shifted multiplication
c = 0
For j from 0 to n do

P ← miNj + sj + c
tj−1 ← Lo(P)
c ← Hi(P)

tn = sn+1 + c

2 basic operations :
mi = s0N ′ mod r −→ Low-part multiplier
P = xy + z + c −→ Multiplier-adder + adder

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

Design

Register stage ρa

Ai

`
ρb

´

mi

Add

Stab1

FIFO

OutputNj Bj

Carry

Adder

Logical gates

Logical gates

Register stage 2

Logical gates

N′

Low-part Multiplier

Pipelined

Pipelined

Multiplier-adder

Lo

S

Temp

Hi

(ρa)

Register stage 1

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

Practical utilisation

R = rn+1

Algorithmic Montgomery representation :

MMnS(A, R2)⇔

{
Ã ≡ AR mod N
S̃ ≤ 2N − 1

Stable by Montgomery multiplication : no intermediate
conversion
Final output (S̃) in Montgomery representation and
S̃ ≤ 2N − 1

Property

If S̃ 6= N, then MMnS(1, S̃) convert S̃ in its classical
representation S with 0 ≤ S ≤ N − 1, without any condition on
the modulus

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

Results (Target : ASIC, O, 35µ SMARTCARD)

Area : ≈ 50kG (64 bits wordsize) (FIFO not taken into
account)
Time : T (n) = (n + 1)(2n + 3 + nlat + n′lat) cycles

|N| = 512 bits : n = 8 and T (n) = 180 cycles
|N| = 1024 bits : n = 16 and T (n) = 595 cycles

Scalable Hardware :
1 Wordsize from 2 bits to ≥ 128 bits
2 Maximal size of the FIFO memory

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Modular Multiplication
Algorithm used and implementation
Design

Time-area tradeoff

 100

 1000

 10000

 100000

 0.1 1 10 100 1000

C
lo

ck
 C

yc
le

s

Gates number (kG)

1024 bits Time-area tradeoff

’Gaubatz_1024_a’
’Gaubatz_1024_b’
’Gaubatz_1024_c’
’Gaubatz_1024_d’

’Mixte1024_coeur.dat’

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Minimizing the different kinds of basic operations ?

1 basic operation = 1 basic processing unit
Cell={basic processing units}
Only one cell is used in our hardware design
Minimizing the different kinds of basic processing units =
reducing hardware area

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Removing the Low-part multiplication

Thomas Blum, 1999
“The Low-part multiplication can be removed.”

How ?
mi = S0N ′ mod r (N ′ = −N−1 mod r)
Idea : replace modulus N by Ñ = N ′ × N
mi such that mi Ñ + S is divisible by r
mi = −s0Ñ mod r = −s0(N ′ × N) mod r

= s0 mod r

mi determination = read the Least Significant Digit of the
output at iteration i − 1
Low-part multiplier is no longer needed

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Hardware simplification

Pipelined

Ai

mi

Add

Stab1

FIFO

OutputNj Bj

SCarry

N′

`
ρb

´
Low-Part Multiplier

Adder

Multiplier-adder

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Hardware simplification

Hardware saving : ≈ 30%

Doesn’t depend on modulus size

Adder

Ai

Add

Stab1

FIFO

OutputNj Bj

SCarry

Multiplier-adder

Pipelined

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Additional computational time cost

New modulus used : Ñ = N ′ × N
Size : n + 1 digits in radix r representation
T̃ (n) = (n + 2)(2n + 5 + ñlat + ñ′lat)

Additional computational time cost : 4n + 7 cycles and a
relative additional cost of :

+
4n + 7

(n + 1)(2n + 3)
%

Exemples :

Size (bits) 512 1024 2048
Additional cost (%) 16.17 11.93 6.10

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Strategy
Removing the Low-part multiplication
Repercussions on Time-area tradeoff

Time-area tradeoff

 100

 1000

 10000

 100000

 0.1 1 10 100 1000

C
lo

ck
 C

yc
le

s

Gates number (kG)

1024 bits Time-area tradeoff

’Gaubatz_1024_a’
’Gaubatz_1024_b’
’Gaubatz_1024_c’
’Gaubatz_1024_d’

’Mixte1024_coeur.dat’
’LH1024_coeur.dat’

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

The problem
Software solution
Hardware Solution

Final output : the problem

Output S̃ such that :
S̃ ≡ ABr−n−2 mod Ñ
S̃ < 2Ñ

MMn+1S̃(1, S̃) ≤ Ñ < rN
Problem : result is r times greater than the expected
result...

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

The problem
Software solution
Hardware Solution

Software solution

Only one correction step for a long modular exponentiation
process
Correction step might be done in software (division)
Good solution if there is a software division
implementation...

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

The problem
Software solution
Hardware Solution

Hardware solution

Call to the old algorithm MMn+1S with modulus N and not
with Ñ

Property

If S̃ 6= N mod N then MMn+1S(1, S̃) < N

need of a low part multiplication ?
Yes, but this operation will be performed by the
multiplier-adder

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

Previous Work : a summary
Time-Area Tradeoff improvement

Final Correction
Conclusion

Conclusion

Strategy : 1 basic operation = 1 basic processing unit
Only one cell used, with large datapath
Reducing number of different kinds of operation = strongly
reduces hardware area
New time-area tradeoff is better even if computational time
increases
Final correction step is possible in hardware

F. BERNARD Time-Area Tradeoff Improvement - Modular Multiplication

	Previous Work : a summary
	Modular Multiplication
	Algorithm used and implementation
	Design

	Time-Area Tradeoff improvement
	Strategy
	Removing the Low-part multiplication
	Repercussions on Time-area tradeoff

	Final Correction
	The problem
	Software solution
	Hardware Solution

	Conclusion

