Arithmetic Operators for Pairing-Based Cryptography

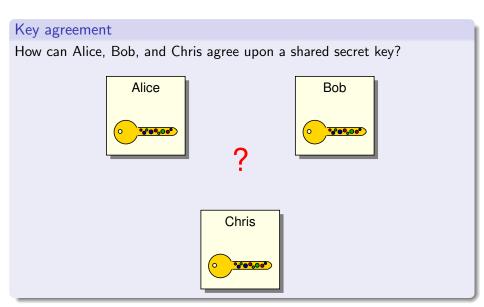
Jean-Luc Beuchat

Laboratory of Cryptography and Information Security Graduate School of Systems and Information Engineering University of Tsukuba 1-1-1 Tennodai, Tsukuba Ibaraki, 305-8573, Japan mailto:beuchat@risk.tsukuba.ac.jp

Joint work with Nicolas Brisebarre (Université J. Monnet, Saint-Étienne, France), Jérémie Detrey (ENS Lyon, France), Eiji Okamoto (University of Tsukuba, Japan), Masaaki Shirase (Future University, Hakodate, Japan), and Tsuyoshi Takagi (Future University, Hakodate, Japan)

Outline of the Talk

- 1 Example: Three-Party Key Agreement
- 2 Computation of the η_T Pairing
- 3 A Coprocessor for the Full Pairing Computation
- 4 Conclusion



Discrete logarithm problem (DLP)

- $G = \langle P \rangle$: additively-written group of order n
- DLP: given P, Q, find the integer $x \in \{0, \dots, n-1\}$ such that Q = xP

Discrete logarithm problem (DLP)

- $G = \langle P \rangle$: additively-written group of order n
- DLP: given P, Q, find the integer $x \in \{0, ..., n-1\}$ such that Q = xP

Diffie-Hellman problem (DHP)

Given P, aP, and bP, find abP.

Discrete logarithm problem (DLP)

- $G = \langle P \rangle$: additively-written group of order n
- DLP: given P, Q, find the integer $x \in \{0, ..., n-1\}$ such that Q = xP

Diffie-Hellman problem (DHP)

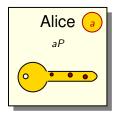
Given P, aP, and bP, find abP.

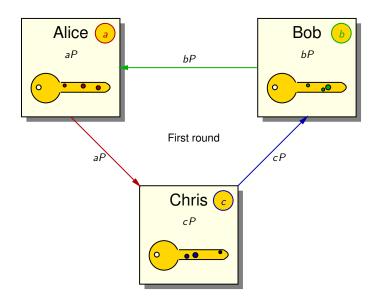
Discrete logarithm problem (DLP)

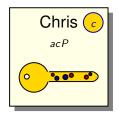
- $G = \langle P \rangle$: additively-written group of order n
- DLP: given P, Q, find the integer $x \in \{0, ..., n-1\}$ such that Q = xP

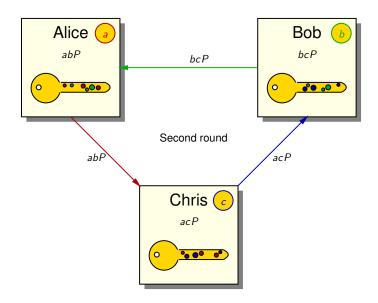
Diffie-Hellman problem (DHP)

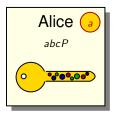
Given P, aP, and bP, find abP.

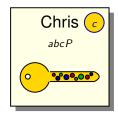












Three-party two-round key agreement protocol

Does a three-party one-round key agreement protocol exist?

Bilinear pairing

- $G_1 = \langle P \rangle$: additively-written group
- G2: multiplicatively-written group with identity 1
- A bilinear pairing on (G_1, G_2) is a map

$$\hat{e}:\textit{G}_{1}\times\textit{G}_{1}\rightarrow\textit{G}_{2}$$

that satisfies the following conditions:

1 Bilinearity. For all Q, R, $S \in G_1$,

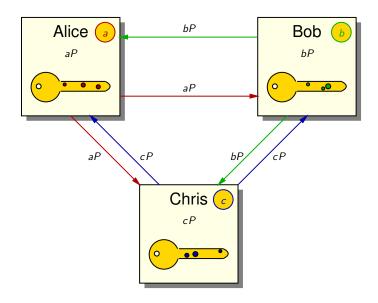
$$\hat{e}(Q + R, S) = \hat{e}(Q, S)\hat{e}(R, S)$$
 and $\hat{e}(Q, R + S) = \hat{e}(Q, R)\hat{e}(Q, S)$.

- **2** Non-degeneracy. $\hat{e}(P, P) \neq 1$.
- Computability. ê can be efficiently computed.

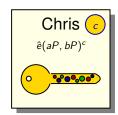
Bilinear Diffie-Hellman problem (BDHP)

Given P, aP, bP, and cP, compute $\hat{e}(P, P)^{abc}$

Assumption: the BDHP is difficult



$$\hat{e}(bP, cP)^a = \hat{e}(aP, cP)^b = \hat{e}(aP, bP)^c = \hat{e}(P, P)^{abc}$$



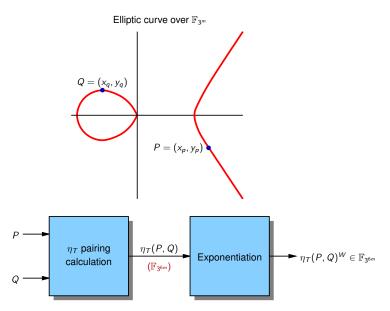
Examples of cryptographic bilinear maps

- Weil pairing
- Tate pairing
- η_T pairing (Barreto et al.)
- Ate pairing (Hess et al.)

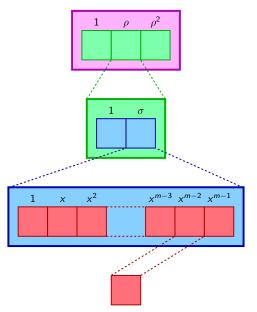
Applications

- Identity based encryption
- Short signature

Computation of the η_T Pairing



Computation of the η_T Pairing – Tower Field

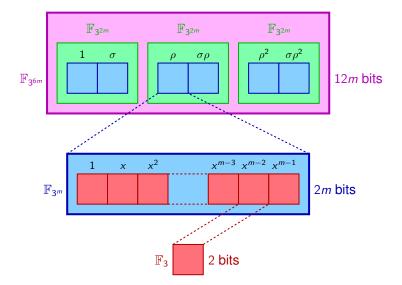


$$\mathbb{F}_{3^{6m}}=\mathbb{F}_{3^{2m}}[
ho]/(
ho^3-
ho-1)$$
 $\mathbb{F}_{3^{2m}}=\mathbb{F}_{3^m}[\sigma]/(\sigma^2+1)$

$$\mathbb{F}_{3^m} = \mathbb{F}_3[x]/(f(x))$$

$$\mathbb{F}_3 = \mathbb{Z}/3\mathbb{Z} = \{0, 1, 2\}$$

Computation of the η_T Pairing – Tower Field



Computation of the η_T Pairing

$\eta_T(P,Q)$

- Addition
- Multiplication
- Cubing
- Cube root

$\eta_T(P,Q)^{3^{\frac{m+1}{2}}}$ (Arith 18)

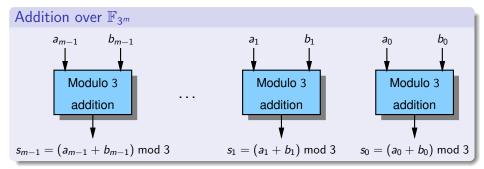
- Addition
- Multiplication
- Cubing

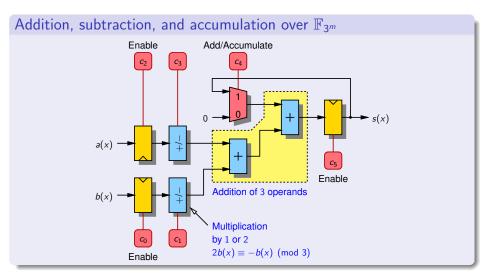
Bilinearity of
$$\eta_T(P,Q)^W$$

$$\eta_{\mathcal{T}}(P,Q)^{W} = \sqrt[3^{m}]{\left(\eta_{\mathcal{T}}\left(\left[3^{\frac{m-1}{2}}\right]P,Q\right)^{3^{\frac{m+1}{2}}}\right)^{W}}$$

Operations over \mathbb{F}_{3^m}

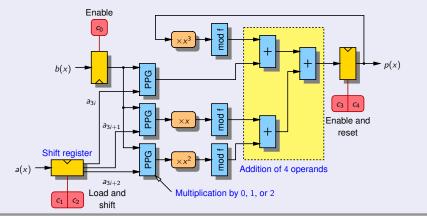
Additions	$51 \cdot \frac{m-1}{2} + 503$
Multiplications	$15\cdot\frac{m-1}{2}+86$
Cubings	10m + 2
Inversion	1

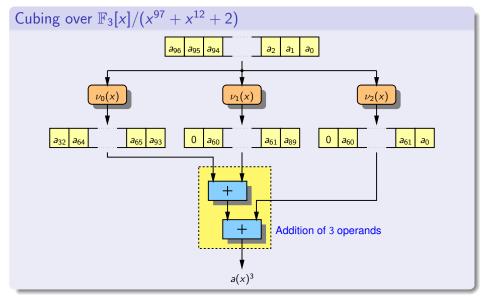




Multiplication over \mathbb{F}_{3^m}

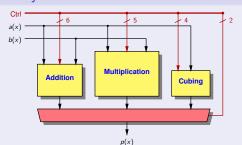
- Array multiplier ($\lceil m/3 \rceil$ clock cycles)
- Most significant coefficient first (Horner's rule)





Arithmetic operators over $\mathbb{F}_{3^{97}}$ on a Cyclone II FPGA

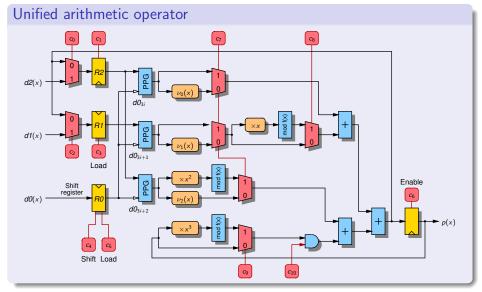
Operation	Area [LEs]	Control [bits]
Add./sub.	970	6
Mult.	1375	5
Cubing	668	4
ALU	3308	17



Unified arithmetic operator

- Operations
 - Addition
 - Subtraction
 - Accumulation
 - Multiplication
 - Cubing
- Area (Cyclone II): 2676 LEs (instead of 3308)
- Control bits: 11 (instead of 17)
- Inversion: Fermat's little theorem (96 cubings and 9 multiplications)

$$a^{3^m-2}=a^{-1}$$
, where $a\in\mathbb{F}_{3^m}$



Results (CHES 2007)

- FPGA: Xilinx Virtex-II Pro 4
- $\mathbb{F}_3[x]/(x^{97}+x^{12}+2)$
- Area: 1888 slices + 6 memory blocks
- Clock frequency: 147 MHz
- Clock cycles for a full pairing: 32618
- Calculation time: 222μ s

Results (CHES 2007)

- FPGA: Xilinx Virtex-II Pro 4
- $\mathbb{F}_3[x]/(x^{97}+x^{12}+2)$
- Area: 1888 slices + 6 memory blocks
- Clock frequency: 147 MHz
- Clock cycles for a full pairing: 32618
- Calculation time: 222μ s

Extended Euclidean algorithm (EEA)

- Area: 2210 additional slices
- Clock cycles for a full pairing: 32419 instead of 32618

Conclusion

Comparisons

Architecture	Area	Calculation time	FPGA
Arith 18 & Waifi 2007	18000 LEs	33μ s	Cyclone II
CHES 2007	1888 slices	$222\mu \mathrm{s}$	Virtex-II Pro
Grabher and Page (CHES 2005)	4481 slices	$432\mu\mathrm{s}$	Virtex-II Pro
Kerins et al. (CHES 2005)	55616 slices	$850\mu\mathrm{s}$	Virtex-II Pro
Ronan et al. (ITNG 2007)	10000 slices	$178\mu\mathrm{s}$	Virtex-II Pro

(1 slice \approx 2 LEs)

Conclusion

VHDL code generator

- Generation of an unified operator according to \mathbb{F}_{p^m} and f(x)
- Support for the following operations:
 - Addition
 - Multiplication
 - Frobenius $(a(x)^p \mod f(x))$
 - Inverse Frobenius $(\sqrt[p]{a(x)} \mod f(x))$

Conclusion

VHDL code generator

- Generation of an unified operator according to \mathbb{F}_{p^m} and f(x)
- Support for the following operations:
 - Addition
 - Multiplication
 - Frobenius $(a(x)^p \mod f(x))$
 - Inverse Frobenius $(\sqrt[p]{a(x)} \mod f(x))$

Future work

- Automatic generation of the control unit
- Application (e.g. short signature)
- Genus 2
- Side-channel

