

Test and Security

Giorgio Di Natale, Marion Doulcier, Marie-Lise Flottes, Bruno Rouzeyre

{dinatale,doulcier,flottes,rouzeyre}@lirmm.fr

Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier

Security vs Test

- Scan-based attacks
- Securing the scan chains
- AES BIST

Conclusion

Security vs Test

- Scan-based attacks
- Securing the scan chains
- AES BIST

Conclusion

- Test: set of operations aiming at checking whether a manufactured unit properly works w.r.t. its specifications or not
- Test cost: very high (~30% of the whole IC cost)

Test: basic principles

How to test? 1: Tester

How to test? 2: Built In Self-Test

The increased densities of ICs makes it possible to include additional hardware to improve the test

Cryptographic Architectures Embedded in Reconfigurable Devices

How to generate input patterns?

- Functional Test
- Structural Test
 - Netlist
 - Fault model (stuck-at, ...)
 - Generation:
 - Exhaustive
 - Deterministic (ATPG)
 - Pseudo-random

Example: terminal counter in a 32-bit counter

- Design techniques that add testability features to a device
- Goal: to increase controllability and observability
- Techniques:
 - Built-In Self-Test
 - Scan chains for sequential circuits
 - Insertion of controllability and observability points

Scan-based Design

Controllability and observability points

Security vs Test

- Scan-based attacks
- Securing the scan chains
- AES BIST

Conclusion

Secure chips

- Functions
 - Secure storage of confidential data
 - Cryptographic capacity (ciphering algorithms)
- Applications
 - Identification
 - Electronic signature
 - Access control for restricted areas or systems
 - Electronic purse…
- Fields
 - Communication
 - Banking
 - E-government
 - Pay-tv...
- Manufacturing
 - Integrated circuits
 - Must be tested
 - Because it's an integrated circuit
 - Primordial to insure high level of security

But ... Security fears testability !

- Security reduces controllability and observability
- Testability induces more controllability and observability
 - Create new attacks

Problem to solve

- Choose an appropriate DfT strategy
- Imagine the possible hazards induced by the DfT technique
- Adapt the DfT technique to security constraints

Security vs Test

- Scan-based attacks
- Securing the scan chains
- AES BIST

Conclusion

AES Architecture

Scan based attack [Yang, DAC05]

Goal

• Retrieve the User key (K)

Principle

• Use the scan chain to observe the data processed by the circuit at various moments

Method

- 1. Retrieve the FFs storing the cipher text
- 2. Read the FFs content after 1 encryption round
- 3. Mathematically compute the key

1. Retrieve the FFs

1. Retrieve the FFs

Security vs Test

- Scan-based attacks
- Securing the scan chains
- AES BIST
- Conclusion

Securing the scan chain

Goal

- No observation nor control of the functional data processed by the secure system during mission time
- Principle
 - Prevent illegal scan shift operations
- Solutions
 - Test mode protection
 - Scan protocol
 - Test Patterns watermarking
 - System mode protection
 - Scan chain scrambling
 - Scan enable tree protection
 - Spy FFs

Test mode protection

Scan protocol

- The circuit is initialized (reset) before and after test mode
- Initialization is checked before switching to another mode
- Switch between the 2 modes, bypassing the initialization, is detected

Test pattern watermarking

- Test patterns embed authentication keys
- Keys are dynamically changed (LFSR-based)

System mode protection

Scrambling method

• Scan path with a prefixed segment organization during test mode

Scan path with random segment organization if shift during system mode

• Time T1

Scan-Enable Tree Protection

• Compare the scan enable signals at different locations

System mode protection

Spy Flip-Flops

- Include Spy cells in the scan chain
- Control the spy cells to a constant value
- Observe the spy cells states

Design used for comparison

- DES (198 FFs)
- 1 buffer on the scan-enable tree leaf drives up to 6 FFs
- Scrambling : 6 segments
- Scan-enable observation : 8 branches
- Spy cells : 6 additional FFs

Pattern watermarking : 4-bit keys

		Scrambling	Scan enable	Spy cell	Pattern watermarking
Insertion flow		RTL	RTL + place&route	RTL	RTL
Test	Test time	0%	1%	5%	0.4%
Design	Area	0.2%	0.3%	1.8%	~0%
	power c.	7%	0%	0%	0%
Security		+++	++	++	+

Security vs Test

- Scan-based attacks
- Securing the scan chains
- AES BIST
- Conclusion

Test Solutions for Secure Chips

Scan path

- High fault coverage
- Automatic generation of scan chains
- Simplified test sequence generation
- Full control / observation of internal states !

BIST

- Reduced ATE cost
- In-situ testing
- Test at nominal speed
- Limited control / observation of internal states
- FC% & Cost ?

Crypto operation: FC=100% with 1750 patterns

Security vs Test

- Scan-based attacks
- Securing the scan chains
- AES BIST

Conclusion

- Security requires new approaches for scan designs
- Countermeasures must address two kinds of attack
 - Legal activation of the test circuitry
 - corruption of the authentication scheme
 - malfunction of the security
 - insider attack
 - Physical access to the chip
 - high knowledge of the circuit
 - very expensive equipment

 The secure scan solutions must be chosen according to the required level of security and the impact on the design