An Optimized Hardware Architecture for Montgomery Multiplication Algorithm

Miaoqing Huang¹, <u>Kris Gaj²</u>, Soonhak Kwon³, Tarek El-Ghazawi¹

¹ The George Washington University, Washington, D.C., U.S.A.

² George Mason University, Fairfax, VA, U.S.A.

³ Sungkyunkwan University, Suwon, Korea

Motivation

- Fast modular multiplication required in multiple cryptographic transformations
 - RSA, DSA, Diffie-Hellman
 - Elliptic Curve Cryptosystems
 - ECM, p-1, Pollard's rho methods of factoring, etc.
- Montgomery Multiplication invented by Peter L. Montgomery in 1985 is most frequently used to implement repetitive sequence of modular multiplications in both software and hardware
- Montgomery Multiplication in hardware replaces division by a sequence of simple logic operations, conditional additions and right shifts

Montgomery Modular Multiplication (1)

$$Z = X \cdot Y \mod M$$

X, Y, M – n-bit numbers

Integer domain

Montgomery domain

X
$$\longrightarrow X' = X \cdot 2^{n} \mod M$$
Y
$$\longrightarrow Y' = Y \cdot 2^{n} \mod M$$

$$Z' = MP(X', Y', M) =$$

$$= X' \cdot Y' \cdot 2^{-n} \mod M =$$

$$= (X \cdot 2^{n}) \cdot (Y \cdot 2^{n}) \cdot 2^{-n} \mod M =$$

$$= X \cdot Y \cdot 2^{n} \mod M$$

$$Z = X \cdot Y \mod M \leftarrow Z' = Z \cdot 2^n \mod M$$

Montgomery Modular Multiplication (2)

$$X \longrightarrow X'$$

$$X' = MP(X, 2^{2n} \mod M, M)$$

$$Z \longleftarrow Z'$$

$$Z = MP(Z', 1, M)$$

Basic version of the Radix-2 Montgomery Multiplication Algorithm

Algorithm 1 Radix-2 Montgomery Multiplication

```
Require: odd M, n = \lfloor \log_2 M \rfloor + 1, X = \sum_{i=0}^{n-1} x_i \cdot 2^i, with 0 \le X, Y < M
```

Ensure:
$$Z = MP(X, Y, M) \equiv X \cdot Y \cdot 2^{-n} \pmod{M}, 0 \le Z < M$$

- 1: S[0] = 0
- 2: **for** i = 0 to n 1 step 1 **do**
- 3: $q_i = S[i] + x_i \cdot Y \pmod{2}$
- 4: $S[i+1] = (S[i] + x_i \cdot Y + q_i \cdot M) \text{ div } 2$
- 5: end for
- 6: if (S[n] > M) then
- 7: S[n] = S[n] M
- 8: end if
- 9: return Z = S[n]

Classical Design by Tenca & Koc CHES 1999

Multiple Word Radix-2 Montgomery Multiplication algorithm (MWR2MM)

Main ideas:

Use of short precision words (w-bit each):

- Reduces broadcast problem in circuit implementation
- Word-oriented algorithm provides the support needed to develop scalable hardware units.

Operand Y(multiplicand) is scanned word-by-word, operand X(multiplier) is scanned bit-by-bit.

Classical Design by Tenca & Koc CHES 1999

Each word has w bits

Each operand has

- n bits
- e words

$$e = \left\lceil \frac{n+1}{w} \right\rceil$$

The bits are marked with subscripts, and the words are marked with superscripts.

MWR2MM

Multiple Word Radix-2 Montgomery Multiplication algorithm by Tenca and Koc

Algorithm 2 The Multiple-Word Radix-2 Montgomery Multiplication Algorithm

Require: odd
$$M, n = \lfloor \log_2 M \rfloor + 1$$
, word size $w, e = \lceil \frac{n+1}{w} \rceil$, $X = \sum_{i=0}^{n-1} x_i \cdot 2^i$, $Y = \sum_{j=0}^{e-1} Y^{(j)} \cdot 2^{w \cdot j}$, $M = \sum_{j=0}^{e-1} M^{(j)} \cdot 2^{w \cdot j}$, with $0 \le X, Y < M$

Ensure: $Z = \sum_{j=0}^{e-1} S^{(j)} \cdot 2^{w \cdot j} = MP(X, Y, M) \equiv X \cdot Y \cdot 2^{-n} \pmod{M}, 0 \le Z < 2M$ 1: S = 0— initialize all words of S

2: **for**
$$i = 0$$
 to $n - 1$ step 1 **do**

3:
$$q_i = (x_i \cdot Y_0^{(0)}) \oplus S_0^{(0)}$$

4:
$$(C^{(1)}, S^{(0)}) = x_i \cdot Y^{(0)} + q_i \cdot M^{(0)} + S^{(0)}$$

5: **for**
$$j = 1$$
 to $e - 1$ step 1 **do**

6:
$$(C^{(j+1)}, S^{(j)}) = C^{(j)} + x_i \cdot Y^{(j)} + q_i \cdot M^{(j)} + S^{(j)}$$

7:
$$S^{(j-1)} = (S_0^{(j)}, S_{w-1..1}^{(j-1)})$$

9:
$$S^{(e-1)} = (C_0^{(e)}, S_{w-1..1}^{(e-1)})$$

11: return
$$Z = S$$

Task

Task (

Task

Data Dependency Graph for MWR2MM by Tenca & Koc

- One PE is in charge of the computation of one column that corresponds to the updating of S with respect to one single bit x_i .
- The delay between two adjacent PEs is 2 clock cycles.
- The minimum computation time is

2•n+e-1 clock cycles

given
 (e+1)/2 PEs
 working in parallel.

Example of operation of the design by Tenca & Koc

Example of the computation executed for 5-bit operands with word-size w = 1 bit

$$w = 1$$

$$e = 5$$

$$2n + e - 1 =$$

2.5 + 5 - 1 = 14 clock cycles

Main idea of the new architecture

- In the architecture of Tenca & Koc
 - w-1 least significant bits of partial results S^(j) are available one clock cycle before they are used
 - only one (most significant) bit is missing
- Let us compute a new partial result under two assumptions regarding the value of the most significant bit of S^(j) and choose the correct value one clock cycle later

Pseudocode of the Main Processing Element

Algorithm 3 Pseudocode of the processing element PE#j of type E

```
Require: Inputs: q_i, x_i, C^{(j)}, Y^{(j)}, M^{(j)}, S_0^{(j+1)}

Ensure: Output: C^{(j+1)}, S_0^{(j)}

1: (CO^{(j+1)}, SO_{w-1}^{(j)}, S_{w-2..0}^{(j)}) = (1, S_{w-1..1}^{(j)}) + C^{(j)} + x_i \cdot Y^{(j)} + q_i \cdot M^{(j)}

2: (CE^{(j+1)}, SE_{w-1}^{(j)}, S_{w-2..0}^{(j)}) = (0, S_{w-1..1}^{(j)}) + C^{(j)} + x_i \cdot Y^{(j)} + q_i \cdot M^{(j)}

3: if (S_0^{(j+1)} = 1) then

4: C^{(j+1)} = CO^{(j+1)}

5: S^{(j)} = (SO_{w-1}^{(j)}, S_{w-2..0}^{(j)})

6: else

7: C^{(j+1)} = CE^{(j+1)}

8: S^{(j)} = (SE_{w-1}^{(j)}, S_{w-2..0}^{(j)})

9: end if
```

Main Processing Element Type E

The Proposed Optimized Hardware Architecture

The First and the Last Processing Elements

Type D

Type F

Data Dependency Graph of the Proposed New Architecture

Conceptual Comparison with Earlier Designs

	Tenca et al. [4–6]		Our Architecture		McIvor et al. [7]
	Radix-2	Radix-4	Radix-2	Radix-4	Radix-2
Minimum number of					
PEs minimizing	1	1	e	e	1
circuit area					
Optimal number of					
PEs minimizing	$\lceil \frac{e+1}{2} \rceil$	$\lceil \frac{e+1}{2} \rceil$	e	e	1
circuit latency					
Latency in clock cycles	$2 \cdot n + e - 1$	n+e-1	n+e-1	$\frac{n}{2} + e - 1$	$n+1^*$

^{*} The result is in the Carry Save form.

- 4. Tenca, A. and Koç, Ç. K.: A scalable architecture for Montgomery multiplication, CHES 99, Lecture Notes in Computer Sciences, 1717:94–108, 1999
- 5. Tenca, A., Todorov, G., and Koç, Ç. K.: High-radix design of a scalable modular multiplier, CHES 2001, Lecture Notes in Computer Sciences, 2162:185–201, 2001
- 6. Tenca, A. and Koç, Ç. K.: A scalable architecture for modular multiplication based on Montgomery's algorithm, *IEEE Trans. Computers*, **52(9)**:1215–1221, 2003
- 7. McIvor, C., McLoone, M. and McCanny, J.V.: Modified Montgomery Modular Multiplication and RSA Exponentiation Techniques *IEE Proceedings C Computers & Digital Techniques*, **151(6)**:402-408, 2004

Quantitative Comparison for the Implementation Using Xilinx Virtex-II 6000 FF1517-4 FPGA

Target Clock Frequency 100 MHz Experimental testing using SRC-6 Reconfigurable Computer

		1024-bit	2048-bit	3072-bit	4096-bit
Our Proposed	Slices Utilization	4,178(12%)	8,337(24%)	12,495(36%)	16,648(49%)
Architecture	Quantity of PEs	65	129	193	257
	Latency (clocks)	1088	2176	3264	4352
Architecture of	Slices Utilization	3,937(11%)	7,756(22%)	11,576(34%)	15,393(45%)
Tenca & Koç [4]	Quantity of PEs	33	65	97	129
	Latency (clocks)	2113	4225	6337	8449
Architecture of	Slices Utilization	6,241(18%)	12,490(36%)	18,728(55%)	25,474(75%)
McIvor et al. [7]	Latency (clocks)	1025	2049	3073	4097

Normalized Product Latency Times Area New Architecture vs. Previous Architectures

Conclusions

 New optimized architecture for the word-based Montgomery Multiplier

Compared to the classical design by Tenca & Koc:

- Minimum latency smaller by a factor of almost 2, in terms of both clock cycles and absolute time units
- Comparable circuit area for minimum latency
- Improvement in terms of the product of latency times area by a factor of about 1.8
- Reduced scalability (fixed vs. variable number of processing elements required for the given operand size)

Compared to the newer design by McIvor et al.:

- Comparable latency
- Area smaller by at least 33%
- Improvement in terms of the product of latency times area by a factor of about 1.4
- Similar scalability