
An Optimized Hardware
Architecture for Montgomery

Multiplication Algorithm

Miaoqing Huang1, Kris Gaj2,
Soonhak Kwon3, Tarek El-Ghazawi1

1 The George Washington University, Washington, D.C., U.S.A.
2 George Mason University, Fairfax, VA, U.S.A.
3 Sungkyunkwan University, Suwon, Korea

Motivation

• Fast modular multiplication required in
multiple cryptographic transformations

• RSA, DSA, Diffie-Hellman
• Elliptic Curve Cryptosystems
• ECM, p-1, Pollard’s rho methods of factoring, etc.

• Montgomery Multiplication invented by Peter L. Montgomery
in 1985 is most frequently used to implement repetitive
sequence of modular multiplications in both software
and hardware

• Montgomery Multiplication in hardware replaces
division by a sequence of simple logic operations,
conditional additions and right shifts

Montgomery Modular Multiplication (1)

Z = X ⋅ Y mod M

X

Integer domain Montgomery domain

X’ = X ⋅ 2n mod M
Y Y’ = Y ⋅ 2n mod M

Z’ = MP(X’, Y’, M) =
= X’ ⋅ Y’ ⋅ 2-n mod M =
= (X ⋅ 2n) ⋅ (Y ⋅ 2n) ⋅ 2-n mod M =
= X ⋅ Y ⋅ 2n mod M

Z’ = Z ⋅ 2n mod MZ = X ⋅ Y mod M

X, Y, M – n-bit numbers

Montgomery Modular Multiplication (2)

X’ = MP(X, 22n mod M, M)

Z = MP(Z’, 1, M)

X X’

Z Z’

Basic version of the Radix-2
Montgomery Multiplication Algorithm

Classical Design by Tenca & Koc
CHES 1999

Multiple Word Radix-2 Montgomery Multiplication
algorithm (MWR2MM)

Main ideas:

Use of short precision words (w-bit each):
• Reduces broadcast problem in circuit implementation
• Word-oriented algorithm provides the support needed to

develop scalable hardware units.

Operand Y(multiplicand) is scanned word-by-word,
operand X(multiplier) is scanned bit-by-bit.

X = (xn-1, …,x1,x0)
Y = (Y(e-1),…,Y(1),Y(0))
M = (M(e-1),…,M(1),M(0))

The bits are marked with subscripts, and
the words are marked with superscripts.

Classical Design by Tenca & Koc
CHES 1999

Each operand has
n bits
e words e = n+1

w

Each word has w bits

MWR2MM
Multiple Word Radix-2 Montgomery Multiplication

algorithm by Tenca and Koc

Task A

Task B

Task C

e-1 times

• One PE is in charge of the
computation of one column
that corresponds to the
updating of S with respect to
one single bit xi.

• The delay between two
adjacent PEs is 2 clock
cycles.

• The minimum computation
time is

2•n+e-1 clock cycles
• given

(e+1)/2 PEs
working in parallel.

Data Dependency Graph for MWR2MM
by Tenca & Koc

Example of operation of
the design by Tenca & Koc

Example of the computation executed for 5-bit operands with word-size
w = 1 bit

- C

n = 5

w = 1
e = 5

2n + e – 1 =
2⋅5 + 5 – 1 = 14 clock cycles

(e+1)/2 =
(5+1)/2 = 3 PEs

sufficient to perform all
computations

Main idea of the new architecture

• In the architecture of Tenca & Koc
– w-1 least significant bits of partial

results S(j) are available one clock cycle
before they are used

– only one (most significant) bit is missing
• Let us compute a new partial result

under two assumptions regarding the value of the
most significant bit of S(j) and choose the correct
value one clock cycle later

Pseudocode of the Main
Processing Element

Main Processing Element
Type E

The Proposed Optimized Hardware
Architecture

The First and the Last
Processing Elements

Type D Type F

Data Dependency Graph of
the Proposed New Architecture

PE#0 PE#1 PE#2 PE#3

Conceptual Comparison with Earlier Designs

Quantitative Comparison
for the Implementation Using

Xilinx Virtex-II 6000 FF1517-4 FPGA

Target Clock Frequency 100 MHz
Experimental testing using SRC-6

Reconfigurable Computer

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Normalized Product Latency Times Area
New Architecture vs. Previous Architectures

1024Operand size 2048 3072 4096

Our design Tenca & Koc McIvor et al.

1.83

1.41

1.81

1.41

1.80

1.41

1.80

1.44

Conclusions
• New optimized architecture for the word-based

Montgomery Multiplier

Compared to the classical design by Tenca & Koc:
• Minimum latency smaller by a factor of almost 2,

in terms of both clock cycles and absolute time units
• Comparable circuit area for minimum latency
• Improvement in terms of the product of

latency times area by a factor of about 1.8
• Reduced scalability (fixed vs. variable number of

processing elements required for the given operand size)

Compared to the newer design by McIvor et al.:
• Comparable latency
• Area smaller by at least 33%
• Improvement in terms of the product of

latency times area by a factor of about 1.4
• Similar scalability

