Emerging New Stream Ciphers vs. AES Comparative Study of Hardware Performance

Kris Gaj Gabriel Southern Ramakrishna Bachimanchi Pawel Chodowiec & Fall 2006 GMU ECE 545: Introduction to VHDL class George Mason University

ECRYPT
IT F⊙ CONTENT OF CONTENT OF CONTENT OF CONTENT OF CONTENTIn FORMIT F ⊙ CONTENTStream cipher standard, 2004-2008

PROFILE 1

Stream cipher suitable for software implementations

PROFILE 2

- Stream cipher suitable for hardware implementations with limited memory, number of gates, or power supply
- Key size minimum 80 bits
- Initialization vector 32 bits or 64 bits

Goal of Our Project

Comparison of Profile II (hardware) Phase 2 Focus candidates:

- Grain
- Mickey-128
- Phelix
- Trivium

Two additional reference points:

- A5/1 (old & insecure GSM standard)
- AES (compact architecture & basic architecture)

Two hardware technologies:

- Xilinx Spartan 3 FPGAs
- TSMC 90 nm standard-cell library ASICs

Genesis & approach

- Part of GMU Fall 2006 graduate course ECE 545 Introduction to VHDL
- Individual 6-week project
- 4 students working independently on each eSTREAM cipher
- best code for each algorithm selected at the end of the semester
- selected designs verified and revised in order to assure
 - correct functionality
 - standard interface & control
 - uniform design & coding style

Fixed interface

Two independent parameters

d – number of bits processed per clock cycle (radix)

k – number of bits of key/IV loaded per clock cycle

All results generated with

Methodology

Methodology & tools

Technology	FPGA	ASIC
VHDL simulation & debugging	Aldec Active HDL ModelSim Xilinx Edition	
Logic synthesis	Synplicity Synplify Pro v. 8.5	Synopsys Design Analyzer X-2005.9
Implementation (mapping, placing & routing)	Xilinx ISE v. 8.1i	No physical implementation

All results after placing & routing All results <u>after</u> logic synthesis

Assumptions

- Only encryption/decryption, no MAC
- Maximum allowed key and IV sizes

Cipher22	Key size	IV size	Internal state size
Grain	80	64	160
Mickey-128	128	128	320
Phelix	256	128	288
Trivium	80	80	288
A5/1	64	22	64

- Key and IV need to be reloaded each time either of them changes
- No precomputations of internal state outside of the circuit
- Registered data output

Based on basic iterative architecture and component operations of block ciphers and hash functions

Phelix, AES in OFB or CTR mode

Optimizations for the first group of ciphers Grain

 $S_{i+80} = S_{i+62} + S_{i+52} + S_{i+38} + S_{i+23} + S_{i+13} + S_i$ $S_{i+81} = S_{i+63} + S_{i+53} + S_{i+39} + S_{i+24} + S_{i+14} + S_{i+1}$

Optimizations for the third group of ciphers Phelix

Ease of design as perceived by students

based on the specification of each cipher

	Average score (5 – very easy, 1 – very difficult)	Number of students who selected the cipher as their first choice
Trivium	3.36	5
Mickey-128	3.32	3
Grain	3.00	4
Phelix	2.00	0

Throughput vs. area FPGA: Xilinx Spartan 3 family

Throughput vs. area: Phelix FPGA: Xilinx Spartan 3 family

Throughput vs. area: <u>Throughput up to 3 Gbit/s</u> FPGA: Xilinx Spartan 3 family

Optimizations for <u>minimum area</u> FPGA: Xilinx Spartan 3 family

Optimizations for <u>maximum throughput to area ratio</u> FPGA: Xilinx Spartan 3 family

Setup Time = Key & IV Loading + Initialization Time FPGA: Xilinx Spartan 3 family

Conclusions

• Very large differences among candidate ciphers (much larger than for five final candidates in the AES contest)

Possible reasons:

- variety of ciphers based on different design principles
- different internal state, key, and IV sizes
- early stage of the contest

Trivium and Grain outperform other eSTREAM ciphers in terms of

- flexibility
- minimum area
- maximum throughput to area ratio.

Once again ciphers based on LFSR and NFSRs show their superiority in hardware implementations

Security analysis should focus first on the most efficient ciphers