

Accelerating Statistical Tests for Real-Time Estimation of Randomness

Renaud Santoro, Olivier Sentieys, Sébastien Roy

santoro@irisa.fr

June 19 - 22nd 2007

Accelerating Statistical Tests for Real-Time Estimation of Randomness

Introduction
 Batteries of statistical tests
II) Statistical test implementation
III) Interest of hardware statistical test
Conclusion

Random numbers generators and statistical tests

Two families of RNG exist

- True Random Generators (TRNG)
 - Chaotic process : radioactive decay, thermal noise, free running jitter oscillators
- Pseudo Random Generators (PRNG)
 - Deterministic algorithms
 - Initialized by TRNG : seed

Statistical tests

- Used to detect certain kind of weaknesses a RNG may have [Knu97]
- Some batteries of statistical tests are reported in the literature :
 - NIST [RSN+01]
 - Diehard [Mar96]
 - FIPS 140-2 [FIP99]
 - AIS 20, AIS 31 [Ais99]
 - Maurer [Mau91]

RNG quality can vary in time

- TRNG depends on physical process
 - Difficult to predict physical behavior
 - Depends on implementation quality
 - Chaotic processes can vary and become more deterministic
 - Power noiseThermal noise
 - I hermal noi
- Hacker attacks
 - The randomness of an RNG can be compromised by an attack
 - Statistical test can detect attacks

Consequence

RNG must be tested in real-time conditions

Renaud Santoro, Olivier Sentieys, Sébastien Roy ELISSA Accelerating Statistical Tests for Real-Time Estimation of Randomness 4/20

Introduction I) Batteries of statistical tests II) Statistical test implementation III) Interest of hardware statistical test Conclusion

Batteries of statistical tests

The most re	ecognized batteries	of statistical tests
-------------	---------------------	----------------------

Batteries	Number of tests
NIST [RSN ⁺ 01]	16
Diehard [Mar96]	15
Diehard [MT02]	3

- Implementations consume memories and arithmetic units
- Too costly to be been implemented in embedded circuits

Consequences on implementation choices

- Choose less demanding (in terms of resources) statistical tests
- \Rightarrow implementation of standard statistical tests

Standard	statistical	tests

II) Statistical test implementation

- Less powerful tests
- High implementation efficiency
- Allow testing of RNG in real time
- Prevent RNG deviation from their ideal behavior

II) Statistical test implementation

III) Interest of hardware statistical test

The four selected statistical tests

- Analyzed a 2×10^4 -bit stream
- Frequency test, poker test, run test and long-run test
- Used in FIPS 140-1 and FIPS 140-2 (with greatest significant level of test) [FIP99]
- Currently in AIS 21 and AIS 31 [Ais99]

I) Batteries of statistical tests II) Statistical test implementation

Selected statistical tests [MVO96]

Monobit test

- Digits are uniformly distributed
- Check the RNG bias
- Count the number of 1's n_1 and 0's n_0 in the sequence

$$X_{1} = \frac{(n_{0} - n_{1})^{2}}{n} \rightsquigarrow \chi_{1}^{2}$$
(4)

Poker test

- Bit stream is divided into 4-bit non-overlapping subsequences
- Number of occurrences of each subsequence is counted
- Tests if subsequences are uniformly distributed

$$X_2 = \frac{16}{5.10^3} \sum_{i=0}^{15} n_i^2 - 5.10^3$$
 (5)

Renaud Santoro, Olivier Sentieys, Sébastien Roy

Renaud Santoro, Olivier Sentieys, Sébastien Roy Exists Accelerating Statistical Tests for Real-Time Estimation of Randomness 9/ 20

Introduction I) Batteries of statistical tests II) Statistical test implementation III) Interest of hardware statistical test Conclusion	
Implementation results	

Number of batteries 1 10 Number of Slice Register 409 (1%) 3884 (13%) Number of Slice LUT 777 (2%) 7104 (24%)	Implementation in a Virtex 5 LX50					
Number of Slice Register 409 (1%) 3884 (13%) Number of Slice LUT 777 (2%) 7104 (24%)		Number of batteries	1	10		
Number of Slice LUT 777 (2%) 7104 (24%)		Number of Slice Register	409 (1%)	3884 (13%)		
		Number of Slice LUT	777 (2%)	7104 (24%)		
Maximum frequency (MHz) 188.629 188.331		Maximum frequency (MHz)	188.629	188.331		

Total area technolog	a, total Jy	dynamic	power	and	critical	path	in 130	nm,	1.2V	СМС)S
_											

battery Number	Area	Power	Critical Path
	(µ <i>m</i> ²)	(<i>mW</i>)	(<i>ns</i>)
1	32186	7.5	4.43 (225.733 MHz)

Introduction	
 Batteries of statistical tests 	
II) Statistical test implementation	
III) Interest of hardware statistical test	
Conclusion	

Selected statistical tests

Run test

- n_i^1 : number of *i* length 1's runs (respectively n_i^0), $1 \le i \le 6$
- Verify if n_i^0 and n_i^1 are as expected for a random sequence

Length of run	Required interval (FIPS 140-1, AIS 21, AIS 31)
1	2267-2733
3	1079-1421
3	502-748
4	223-402
5	90-233
≥ 6	90-233

Long Run test

- Number of runs of length greater than 34
- Renaud Santoro, Olivier Sentieys, Sébastien Roy

Accelerating Statistical Tests for Real-Time Estimation of Randomness 10/ 20

FIG.: Sampling of CLJ signal by CLK.

sampling.

Simple stochastic model of the RNG bias as a function of K_D^p value

- $x(nT_Q) = q(nT_q) \oplus q(nT_q T_{CLK}) \dots \oplus q(nT_q (K_D 1)T_{CLK}))$
- $K_D = K_D^p + K_D^1 + K_D^0$
- $K_{D}^{p} \rightarrow$: number of critical samples
 - Critical sample probability distribution is measured in FPGA
- $K_D^1, K_D^0 \rightarrow \text{deterministic}$

I) Batteries of statistical tests II) Statistical test implementation III) Interest of hardware statistical test

1) TBNG model validation [SEDE06] 2) Search for optimal five-neighbor EPGA-based cellular automata

Real-time testing of configuration proposed in [SFDF06]

#	K_M	K_D	K_D^p	$E[x(nT_Q)]$
1	144	119	61	0.829
2	144	175	89	0.729
3	486	119	55	0.553
4	486	161	74	0.524
5	250	203	95	0.526
6	270	203	96	0.496

TAB.: Predicting value of $E[x(nT_{\Omega})]$ via the statistical tests (2 × 10⁷ bits) for each simple stochastic model.

Conclusion of [SFDF06]

- #3,4 : model can not be applied due to dependence between critical samples

configuration.

```
Renaud Santoro, Olivier Sentieys, Sébastien Roy
```

Accelerating Statistical Tests for Real-Time Estimation of Randomness 13/20

I) Batteries of statistical tests II) Statistical test implementation III) Interest of hardware statistical test

1) TRNG model validation [SFDF06] 2) Search for optimal five-neighbor FPGA-based cellular automata

Finding the optimal CA rule

Problem

• If a cell has N neighbors : 2^{2^N} rules are possible

Solutions

- Genetic algorithm [TSP00] (not guaranteed to find the optimal rule)
- Exhaustive search is a time-consuming task
- [STCS02] have done an exhaustive search for a 4-neighbor CA using a hardware entropy measure

Objective

- Find the best rule for one-dimensional uniform CA with 64 cells
- Each cell has 5 neighbors $\Rightarrow 2^{32}$ possible rules exist
- Cyclic boundary conditions are applied

1) TBNG model validation [SEDE06] 2) Search for optimal five-neighbor FPGA-based cellular automata

Cellular automata (CA)

Applicability to VLSI

- Array of cells : highly parallel, regular
- Cell :
 - Locally interconnected
 - Very simple logic functions
 - Have only a finite number of possible states (here {0,1})
- Evolution is defined by the state of the neighbor cells and the CA rule [lla01]
- Depending on the rule, CA can exhibit highly chaotic behavior
- Predicting CA behavior can be extremely difficult [IIa01]

Renaud Santoro, Olivier Sentieys, Sébastien Roy

Accelerating Statistical Tests for Real-Time Estimation of Randomness 14/ 20

I) Batteries of statistical tests II) Statistical test implementation III) Interest of hardware statistical test

1) TRNG model validation [SFDF06] 2) Search for optimal five-neighbor FPGA-based cellular automata

Finding the optimal CA rule

Methodology

- Exhaustive search : accelerated in hardware
 - Four hardware statistical tests
 - Entropy measure computed on 2500 8-bit non-overlapping blocks

$$H_8 = -\sum_{i=0}^{2^8 - 1} p_i \log_2 p_i \tag{6}$$

- Each CA rule is analyzed in real time
- 32 • Number of possible rules (2³²) can be reduced : 16
- Due to the complexity of cutting-edge FPGAs :
 - Several rules can be analyzed simultaneously
- In a Virtex 5 LX50, the exhaustive search takes about 4 hours and 28 minutes

I) Batteries of statistical tests II) Statistical test implementation III) Interest of hardware statistical test

1) TRNG model validation [SFDF06] 2) Search for optimal five-neighbor FPGA-based cellular automata

Global architecture

Hardware statistical tests

- Efficient implementation
- Allowing real-time bit stream randomness evaluation without storing the RNG output
- Warn against RNG weakness
- TRNG depend on their implementation and environment
 - Entropy source can vary with time
 - Statistical tests must be written according to the entropy source (e.g. jitter)
 - Each TRNG can have its own statistical test to detect attacks

Future work : testing RNG by more stringent statistical tests

- Approximate entropy test [Ruk00]
- Autocorrelation test [Ais99]
- Currently implementing the *gcd* test, the *gorilla* test and the *birthday spacing* test described in [MT02]

1) TRNG model validation [SFDF06] 2) Search for optimal five-neighbor FPGA-based cellular automata

Results

PRNG	Entropy (bits)
LFSR64	7.9942
CA 30	7.9927
CA 639 ₁₆	7.9929
CA AAD32197 ₁₆	7.9991

FIG.: Entropy results of some random number generators.

TAB.: Entropy of the four selected pseudo-random number generators when a 2×10^5 bits stream is analyzed.

Conclusion on optimal 5-neighbor

- Converges more quickly to the highest entropy
- Close to the maximal entropy $H_{max} = 8$
- Selected for a given initial state
- Cannot be applied for other seeds \Rightarrow adaptive optimal 5-neighbor search

Renaud Santoro, Olivier Sentieys, Sébastien Roy

Accelerating Statistical Tests for Real-Time Estimation of Randomness 18/20

	Introductio
	 Batteries of statistical test
	II) Statistical test implementatio
)	Interest of hardware statistical te
	Conclusio

Conclusion

Finding cellular automata exhibiting optimal randomness

- Exhaustive search is allowed by using
 - Hardware statistical test
 - Entropy measure
- FPGA circuits boost the search speed
- Several rules can be analyzed at the same time
- Increasing the number of neighbors improves entropy
- Optimal rule is found for a given seed
- For other seeds, the bit stream generated can exhibit randomness failure
- An adaptive CA rule architecture based on hardware statistical tests will be proposed

 [Ais9] [Ais9] [Ais9] [Ais9] [Ais9] [Ais9] [Bis9] Scorely regularents for crybegraphic models, FIPS PUB 140.2, 1990. [Bia0] Active functions [Ciubi2] [Ci		Introduction I) Batteries of statistical tests II) Statistical test implementation III) Interest of hardware statistical test Conclusion			Introduction I) Batteries of statistical tests II) Statistical test implementation III) Interest of hardware statistical test Conclusion			
 (FIP90) <	[Ais99]	Application notes and interpretation of the scheme (ais). Technical report, Bundesamt für Sicherheit in der Informationstechnik, 1999.			Model of a true random number generator aimed at cryptog In In Proceedings of IEEE International Symposium on Circ	graphic applications. cuits and Systems, 2006.		
 [III01] Andree Itabilista. J Bosete Universe. World Scheffle Fuldiants / Disorde Universe. World Scheffle Fuldiants / Disorde Universe. World Scheffle Fuldiants / Disorde Universe. [Kiv37] Donate Ervik Manh The of computer programming, volume 2: seminumerical algorithms. Addison-Weelpage, 31d cellion, 1997. [Mar96] George Marsaglia. Deharai / A batter yol tetts of randomness. Technical report, Florida State University. Talahassee, FL, USA, 1996. [Mar97] Concernse of thorn Advances in Cryptology. Conference on Advances in Cryptology, pages 409-430. London, UK, 1991. Semiger-Verlag. [Mir97] Concernse of thorn Annual International Cryptology Conference on Advances in Cryptology, pages 409-430. London, UK, 1991. Semiger-Verlag. [Mir97] Concernses, Sord A, Vanstone, and Paul. Van Oorschot. Ananchoo K and Maria and Wilwin Tisana, Some difficult-to pass tests of randomness. Tornhicel and Wilwin Tisana Astatiscial test sub for random disputer society pages 800-52, 2001. [Ruk00] Andre L, Bakhin Astatiscial test sub for random and pseudorandom number generators for statistical applications. Mir3T Speezif Paulication In Computer Society, and access Paulie. [Ruk00] Andre L, Bakhin Astatiscial test sub for random and pseudorandom number generators for statistical applications. Journal of Applied Probability, 37(1), 2000. [Britos M, Stringer P, Bachen, Millos Dutarovsky, and Jacques Payole. [Britos M, Stringer M, Ward T, Bachen K, Stringer B, Boo - 22, 2001. [Britos M, Alder P, Bachen, Jacques Payole, and Longer B, Boo A, Bachen J, Bachen J, Stringer B, Boo - 22, 2001. [Britos M, Alder P, Bachen J, Stringer B, Boo - 22, 2001. <	[FIP99]	FIPS. Security requirements for cryptographic modules, FIPS PUB 140-2, 1999.		[STCS02]	Barry Shackleford, Motoo Tanaka, Richard J. Carter, and G High-performance cellular automata random number gener	areg Snider. rators for embedded probabilistic computing systems.		
 Word Southite Hubbanny Company, 2001. (Kryon J) (Kryon J) (Mergel Comparison, Volume 2: seminumerical algorithms. Addison-Weekly Side addion, 1995. (Mergel Comparison, Volume 2: seminumerical algorithms. Addison-Weekly Side addion, 1995. (Mergel Comparison, Volume 2: seminumerical algorithms. Addison-Weekly Side addion, 1995. (Mergel Comparison, Volume 2: seminumerical algorithms. Addison-Weekly Side addion, 1995. (Mergel Comparison, Volume 2: seminumerical algorithms. Addison-Weekly Side addison, 1995. (Mergel Comparison, 1997. (Mergel Side University, Tathabassee, FL, USA, 1996. (Mergel Side University, Tathabassee, FL, USA, 1996. (Morgel Side University, Tathabassee, South A. Vanatone of Advances in Cryptology, pages 408-400. London, UK, 1991. Springer Vertag. Some difficult-to-pass tests of randomness. Troit Interaction of Interactional Comparison. Not Strogenet Proceedings of the Totah Annual International Cryptology Conference on Advances in Cryptology, pages 408-400. London, UK, 1991. Springer Vertag. CRC Press, Inc., Boora Ration, FL, USA, 1996. (FW) Ol Androten, L. Kolaton, FL, USA, 1996. (FW) Ol Androten, L. Rushin, Approximate entropy for testing randomness. Journal of Appleod Probability, 37(1), 2000. (FPLROE) Martinisma, Viktor Fischer, Milos Drutarovsky, and Jacques Fayole. 	[lla01]	Andrew Ilachinski. Cellular Automata : A Discrete Universe.			In EH 02 : Proceedings of the 2002 NASA/DoD Conference Society, 2002.	e on Evolvable Hardware (EH'02), page 191. IEEE Computer		
 [Mar96] George Marsaglia. Dehasi: A battery of tests of andomness. Technical report, Florida. State University. Tellahassee, FL, USA, 1996. [Mau91] Ueli M. Maure: A universal statistical test for random bit generators. In CPVFIC 90. Proceedings of the Tom Annual International Cryptology Conference on Advances in Cryptology, pages 409–402, London, UK, 1991. Springer-Verlag. [MT02] George Marsaglia and Wai Wan Tsang. Some difficult-to-pass tests of randomness. 7(3): 1–8, 2002. [MT03] Aftred J. Henezos, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography. CRC Press, Inc., Book Raton, FL, USA, 1996. [RSN⁺ 01] A. Rukhin, J. Solo, J. Nechvatal, M. Smid, and D.L. Banks. A statistical test suite for random and pseudonadom number generators for statistical applications. MSI of Special Publication in Computer Security. Spage 800–22, 2001. [Rukol] Andrew L. Rukhin, J. Solo, J. Nechvatal, M. Smid, and D.L. Banks. Journal of Applied Cryptopathy (resting randomness. Journal of Applied Probability 37(1), 2000. [SPF060] Martin Simka, Viktor Fischer, Milos Drutarovsky, and Jacques Fayolle. 	[Knu97]	World Scientific Publishing Company, 2001. Donald Ervin Knuth. The art of computer programming, volume 2 : seminumerical algorithms. Addison-Wesley, 3rd edition, 1997.		[TSP00]	Marco Tomassini, Mosne Sipper, and Mameu Perrenoud. On the generation of high-quality random numbers by two-dimensional cellular automata. <i>IEEE Trans. Comput.</i> , 49(10) :1146–1151, 2000.			
 [Mau91] Ueli M. Maurer: A universal statistical lest for random bit generators. In CRYPTO 99 : Proceedings of the 10n Annual International Cryptology Conference on Advances in Cryptology, pages 409-420, London, UK, 1991. Springer-Verlag. [MT02] George Marszaglia and Wai Wan Tsang. Some difficult-to-pass tests of randomness. T(s): 1-9, 2002. [MV096] Altred J. Menzzes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography. CRC Press, Inc., Boca Ration, FL, USA, 1996. [RNV⁺0] A. Rukhin, J. Sotu, J. Mechwatal, M. Smid, and D.L. Banks. A statistical test suite for random and pseudorandom number generators for statistical applications. <i>NIST Special Publication in Computer Security</i>, pages 800–22, 2001. [Ruko] Andrew L. Rukhin. Approximate entropy for testing randomness. <i>Journal of Applied Probability</i>, 37(1), 2000. [SFDF06] Martin Sinka, Nikor Fischer, Milos Drutarovsky, and Jacques Fayolle. 	[Mar96]	George Marsaglia. Diehard : A battery of tests of randomness. Technical report, Florida State University, Tallahassee, FL, USA, 1996.						
 [MT02] George Marsaglia and Wai Wan Tsang. Some difficult-to-pass tests of randomness. 7(3):1-6, 2002. [MV096] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996. [RSN⁺01] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and D.L. Banks. A statistical test suite for random number generators for statistical applications. <i>NIST Special Publication in Computer Security</i>, pages 800–22, 2001. [Ruk00] Andrew L. Rukhin. Approximate entropy for testing randomness. <i>Journal of Applied Probability</i>, 37(1), 2000. [SFDF06] Martin Simka, Viktor Fischer, Milos Drutarovsky, and Jacques Fayolle. 	[Mau91]	Ueli M. Maurer. A universal statistical test for random bit generators. In CRYPTO '90: Proceedings of the 10th Annual International Cryptology Conference on Advances in Cryptology, pages 409–420, London, UK, 1991. Springer-Verlag.						
 [MV096] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1996. [RSN⁺01] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and D.L. Banks. A statistical test suite for random and pseudorandom number generators for statistical applications. <i>NIST Special Publication in Computer Security</i>, pages 800–22, 2001. [Ruk00] Andrew L. Rukhin. Approximate entropy for testing randomness. <i>Journal of Applied Probability</i>, 37(1), 2000. [SFDF06] Martin Simka, Viktor Fischer, Milos Drutarovsky, and Jacques Fayolle. 	[MT02]	George Marsaglia and Wai Wan Tsang. Some difficult-to-pass tests of randomness. 7(3) 1-8, 2002.						
 [RSN⁺01] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and D.L. Banks. A statistical test suite for random and pseudorandom number generators for statistical applications. <i>NIST Special Publication in Computer Security</i>, pages 800–22, 2001. [Ruk00] Andrew L. Rukhin. Approximate entropy for testing randomness. <i>Journal of Applied Probability</i>, 37(1), 2000. [SFDF06] Martin Simka, Viktor Fischer, Milos Drutarovsky, and Jacques Fayolle. 	[MVO96]	Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. <i>Handbook of Applied Cryptography.</i> CRC Press, Inc., Boca Rathon, FL, USA, 1996.						
[Ruk00] Andrew L. Rukhin. Approximate entropy for testing randomness. Journal of Applied Probability, 37(1), 2000. [SFDF06] Martin Simka, Viktor Fischer, Milos Drutarovsky, and Jacques Fayolle.	[RSN ⁺ 01]	A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and D.L. Banks. A statistical lest suite for random and pseudorandom number generators for statistical applications. NIST Special Publication in Computer Security, pages 800–22, 2001.						
[SFDF06] Martin Simka, Viktor Fischer, Milos Drutarovsky, and Jacques Fayolle.	[Ruk00]	Andrew L. Rukhin. Approximate entropy for testing randomness. Journal of Applied Probability, 37(1), 2000.						
	[SFDF06]	Martin Simka, Viktor Fischer, Milos Drutarovsky, and Jacques Fayolle.						
Renaud Santoro, Ulivier Sentieys, Sebastien Hoy Letters Accelerating Statistical lesis for Heal-Time Estimation of Handomness 20/21 Renaud Santoro, Ulivier Sentieys, Sebastien Hoy Letters Accelerating Statistical lesis for Heal-Time Estimation of Handomness 20/21	Renaud Sar	ntoro, Olivier Sentieys, Sébastien Roy Exist Accelerating Statistical Tests for Real-Time Estimation of Randomness 20/	20	Renaud Sa	ntoro, Olivier Sentieys, Sébastien Roy	Accelerating Statistical Tests for Real-Time Estimation of Randomness		