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Introduction

Security in Embedded Systems
– Becoming more and more important

Mobile Terminal users need to supply personal 
information in order to access data sensitive services
Software companies need to protect their products
Threats in many data exchange interfaces

– Memory – Processor interface => Probing
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Introduction

Cryptography
– Confidentiality

only the entities involved in the execution or the 
communication can have access to the data

– Integrity
The message/program must not be altered during the 
transfer or execution.

– Implications
Deciphering overhead
Area Overhead
(e.g. keep signatures)
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Introduction

Code Compression
– Compress the code and store it into the memory
– On-the-fly decompression during execution
– Memory-Processor traffic

More Instructions/Memory access

– Implications:
Decompression overhead

– Advantages
Performance + Energy Consumption + Memory Area
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Code Compression + Cryptography

General Idea
– Minimizing the deciphering overhead by utilizing 

Code Compression
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Code Compression + Cryptography

General Idea
– Minimizing the deciphering overhead by utilizing 
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Code Compression + Cryptography

Confidentiality + Integrity
– What about Integrity?
– PE-ICE solution
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AES

Code Compression + Cryptography

IBC + Confidentiality + Integrity
– Compression IBC
– PE-ICE (AES based) or other...
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Code Compression + Cryptography

Problems with PE-ICE: 
– Memory footprint overhead (to keep the TAG)
– More memory accesses to retrieve the Information + 

tag (address)
Code Compression:
– Reduce the memory footprint
– Reduce memory accesses to retrieve the Information
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The IBCEI

Dictionary Based Code Compression 
– The original instruction will be substituted for indexes 

into a dictionary
The compressed addresses will not be the same 
original addresses (branch targets)
– An Address Translation Table – ATT – will be used.
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The IBCEI

Utilize n dictionaries of different sizes
– The smaller is the dictionary, the smaller is the 

index.
Smaller dictionary: holds the instructions that appear the 
most in the code
Bigger dictionary: holds the instructions that rarely 
appear in the code

– Drawback: how can I guess which index belong to 
which dictionary?

Solution: using a prefix to identify the dictionary
– The bigger is n, the bigger is the prefix
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The IBCEI

Utilize n dictionaries of different sizes
– How many Dictionaries should I use?
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The IBCEI

Example
32
20
12
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8
8
6
6
4
4
4
3
3
3
1
1
1
1
1

nop
add $1,$5,$6
sub $3,$4,$7
call 1032
add $1,$1,$6 
beq $2,$3,10
sub $3,$2,$7
beq $5,$3,1032
add $1,$0,$6
jal $32
ret
mul $1,$2,$3
div $1,$2,$3
sll $1,$2,$3
sethi $7
ld $8,4($5)
addi $1,$1,1
jr $1
st $8,4($5)

instruction occur

total 128

nop add $1,$5,$6
sub $3,$4,$7

call 1032
add $1,$1,$6
beq $2,$3,10 
sub $3,$2,$7

beq $5,$3,1032
add $1,$0,$6
jal $32
ret
mul $1,$2,$3
div $1,$2,$3
sll $1,$2,$3
sethi $7
ld $8,4($5)
addi $1,$1,1
jr $1
st $8,4($5)

Prefix = 002 Prefix = 012 Prefix = 102 Prefix = 112

0
1

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

Compressed Code Size with 1 dict = 608
Compressed Code Size with 2 dict = 512
Compressed Code Size with 4 dict = 480
Compressed Code Size with 8 dict = 494

Compressed Code Size = 32x2 + 32x(2+1) + 32x(2+2) + 32x(2+4)
= 480 bits 
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The IBCEI

Hiding the decompression latency and 
minimize the ATT size
– Decompressor between the Main Memory and the 

Cache
– Each cache miss will invoke the decompressor. 

The ATT will keep only the cache line addresses 
correspondences.
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The IBCEI

Hiding the decompression latency and 
minimize the ATT size
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The IBCEI

PE-ICE + Code Compression
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The IBCEI

The execution view
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Results

Leon (SPARC v8) processor
Mediabench and MiBench benchmarks suites
LECCS – GCC Leon cross compiler with –O2 
Simulator based
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Results

External Memory footprint
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Results

Area
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Results

Performance, cache 1k
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Results

Performance, cache 8k
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Conclusions

IBCEI
– Performance:

Less memory accesses than PE-ICE  
AES block is less utilized too 
Decompression Overhead 

– Area:
Smaller memory footprint than PE-ICE 
Decompressor Overhead (minimum) 

– Security:
Same level of PE-ICE security 
Compression minimizes the redundancy before ciphering  
Compression introduces a novel statistic component to the 
eavesdropper 
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Conclusions

Future Work
– Dynamic Dictionaries
– Parameters impact
– RW Data compression
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Thank you


