
1

A Code Compression Method with
Encryption and Integrity Checking

CryptArchi 2007

Eduardo WANDERLEY

CEFET-RN, Brazil
LESTER Lab. UBS, France
IcTER Project

2

Plan

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

3

Introduction

Security in Embedded Systems
– Becoming more and more important

Mobile Terminal users need to supply personal
information in order to access data sensitive services
Software companies need to protect their products
Threats in many data exchange interfaces

– Memory – Processor interface => Probing

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

4

Introduction

Cryptography
– Confidentiality

only the entities involved in the execution or the
communication can have access to the data

– Integrity
The message/program must not be altered during the
transfer or execution.

– Implications
Deciphering overhead
Area Overhead
(e.g. keep signatures)

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

5

Introduction

Code Compression
– Compress the code and store it into the memory
– On-the-fly decompression during execution
– Memory-Processor traffic

More Instructions/Memory access

– Implications:
Decompression overhead

– Advantages
Performance + Energy Consumption + Memory Area

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

6

Code Compression + Cryptography

General Idea
– Minimizing the deciphering overhead by utilizing

Code Compression
110000110
001100101
001100101
100001110
100110011
111011110
001100101
001100101
100110011
001100101
001100101

110011110
111101101
011110101
101111111
100000000

00111110
11110011
01010101
11000011
11100111

Compress
Block
Cipher

Memory

Original
Code

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

7

Code Compression + Cryptography

General Idea
– Minimizing the deciphering overhead by utilizing

Code Compression
00111110
11110011
01010101
11000011
11100111

110011110
111101101

Decipher decompress

Memory

011110101
101111111
100000000

110000110
001100101
001100101
100001110
100110011
111011110
001100101
001100101
100110011
001100101
001100101

110000110

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

8

Code Compression + Cryptography

Confidentiality + Integrity
– What about Integrity?
– PE-ICE solution

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

9

AES

Code Compression + Cryptography

IBC + Confidentiality + Integrity
– Compression IBC
– PE-ICE (AES based) or other...

SoC: Trusted area
M

em
or

y
C

on
tr

ol
le

r
External Memory

CPU

C
ac

he

Address bus

PE-ICE Ciphered
memory block

Block
Decryption

C
O

M
P

 OK? PL || ADD = Dk(C)

T’ = ADD’

T = ADD

T’ = T ?

Information @+ Ciphered block

AES

Ciphered block

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

10

Code Compression + Cryptography

Problems with PE-ICE:
– Memory footprint overhead (to keep the TAG)
– More memory accesses to retrieve the Information +

tag (address)
Code Compression:
– Reduce the memory footprint
– Reduce memory accesses to retrieve the Information

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

11

The IBCEI

Dictionary Based Code Compression
– The original instruction will be substituted for indexes

into a dictionary
The compressed addresses will not be the same
original addresses (branch targets)
– An Address Translation Table – ATT – will be used.

A
B
C
D
E
F
G
H

Original Code

a b
c d
e f
g h

Compressed Code

00
04
08
0c
10
14
18
1c

PC - 4

00
04
08
0c

PC - 2

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

12

The IBCEI

Utilize n dictionaries of different sizes
– The smaller is the dictionary, the smaller is the

index.
Smaller dictionary: holds the instructions that appear the
most in the code
Bigger dictionary: holds the instructions that rarely
appear in the code

– Drawback: how can I guess which index belong to
which dictionary?

Solution: using a prefix to identify the dictionary
– The bigger is n, the bigger is the prefix

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

13

The IBCEI

Utilize n dictionaries of different sizes
– How many Dictionaries should I use?

4 5 0

5 0 0

5 5 0

6 0 0

6 5 0

1 2 4 8 16

C
om

pr
es

se
d

C
od

e
Si

ze

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

70%

65%

60%

55%

50%

14

The IBCEI

Example
32
20
12
10
8
8
6
6
4
4
4
3
3
3
1
1
1
1
1

nop
add $1,$5,$6
sub $3,$4,$7
call 1032
add $1,$1,$6
beq $2,$3,10
sub $3,$2,$7
beq $5,$3,1032
add $1,$0,$6
jal $32
ret
mul $1,$2,$3
div $1,$2,$3
sll $1,$2,$3
sethi $7
ld $8,4($5)
addi $1,$1,1
jr $1
st $8,4($5)

instruction occur

total 128

nop add $1,$5,$6
sub $3,$4,$7

call 1032
add $1,$1,$6
beq $2,$3,10
sub $3,$2,$7

beq $5,$3,1032
add $1,$0,$6
jal $32
ret
mul $1,$2,$3
div $1,$2,$3
sll $1,$2,$3
sethi $7
ld $8,4($5)
addi $1,$1,1
jr $1
st $8,4($5)

Prefix = 002 Prefix = 012 Prefix = 102 Prefix = 112

0
1

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

Compressed Code Size with 1 dict = 608
Compressed Code Size with 2 dict = 512
Compressed Code Size with 4 dict = 480
Compressed Code Size with 8 dict = 494

Compressed Code Size = 32x2 + 32x(2+1) + 32x(2+2) + 32x(2+4)
= 480 bits

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

15

The IBCEI

Hiding the decompression latency and
minimize the ATT size
– Decompressor between the Main Memory and the

Cache
– Each cache miss will invoke the decompressor.

The ATT will keep only the cache line addresses
correspondences.

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

16

The IBCEI

Hiding the decompression latency and
minimize the ATT size

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

17

The IBCEI

PE-ICE + Code Compression

C
hu

nk

PE
-IC

E @block

@bloc
k

00000000 00000000 3210

@original @ChunkPE-ICE offset

00000010 00000000 8910
00000020 00000000 9910
00000030 00000010 3210
00000040 00000010 8910
00000050 00000010 9610
00000060 00000020 3210
00000070 00000020 12510

...
000001f0 00000048 1910

Tag data

@CacheLine

@bloc
k

Address Translation Table

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

18

The IBCEI

The execution view

CPU

ca
ch

e

@original ATT
@blockAES

Memory

4 +

AES-1

Comp

Dictionaries

Instruction

Ok?

Secure zone

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

19

Results

Leon (SPARC v8) processor
Mediabench and MiBench benchmarks suites
LECCS – GCC Leon cross compiler with –O2
Simulator based

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

20

Results

External Memory footprint

0

20

40

60

80

100

ad
pc

m_e
ad

pc
m_d
cjp

eg
djp

eg
dij

ks
tra

se
arc

h
su

sa
n

C
om

pr
es

si
on

 R
at

io
 (%

)

CODE

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

21

Results

Area

0

20

40

60

80

100

120

ad
pc

m_e
ad

pc
m_d
cjp

eg
djp

eg
dij

ks
tra

se
arc

h
su

sa
n

C
om

pr
es

si
on

 R
at

io
 (%

)

ATT
DICT
CODE

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

22

Results

Performance, cache 1k

0,0

0,2

0,4

0,6

0,8

1,0

1,2

adpcm_e adpcm_d c jpeg djpeg dijkst ra se a rch susan

IP
C

re
la

tiv
e

to
 o

rig
in

al

IBCEI AES-only PE-ICE

Original Execution IpC
(w/o security;

w/o compression)

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

23

Results

Performance, cache 8k

0,0

0,2

0,4

0,6

0,8

1,0

1,2

adpcm_e adpcm_d c jpeg djpeg dijkst ra sea rch susan

IPC
 re

lat
ive

 to
 or

igi
na

l

IBCEI AES-only PE-ICE

Original Execution IpC
(w/o security;

w/o compression)

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

24

Conclusions

IBCEI
– Performance:

Less memory accesses than PE-ICE
AES block is less utilized too
Decompression Overhead

– Area:
Smaller memory footprint than PE-ICE
Decompressor Overhead (minimum)

– Security:
Same level of PE-ICE security
Compression minimizes the redundancy before ciphering
Compression introduces a novel statistic component to the
eavesdropper

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

25

Conclusions

Future Work
– Dynamic Dictionaries
– Parameters impact
– RW Data compression

Introduction
Code Compression + Cryptography
The IBCEI
Results
Conclusions

26

Thank you

