Outline	RFID Principles 0	RFID Applications O	Electronic Passports 00 00 000000	Conclusion, references
		FEL ČVI	JT	
			8	

Security of RFID in pracitce Electronic Passports

Jiří Buček, Róbert Lórencz, Tomáš Rosa

May 22, 2008

- 4 回 と 4 注 と 4 注 と

-2

Jiří Buček, Róbert Lórencz, Tomáš Rosa

Security of RFID in pracitce

Outline	RFID Principles	RFID Applications	Electronic Passports	Conclusion, references
			00 00 000000	

- 1 RFID Principles
 - Physical Principles
- 2 RFID Applications• Applications
- 3 Electronic Passports
 - Standards
 - Security
 - Measurements

Outline	RFID Principles ●	RFID Applications 0	Electronic Passports 00 00 000000	Conclusion, references
Physical Prin	ciples			

Radio Frequency Identification

Frequency categories

- LF chips/cards (125–150 kHz)
- HF proximity cards ISO/IEC 14443 (13.56 MHz)
- HF vincity cards ISO/IEC 15693 (13.56 MHz)
- UHF chips (868–928 MHz)
- Physical principles
 - LF, HF inductive coupling
 - UHF radiation coupling

• RFID – Application of RF technology for identification

Outline	RFID Principles 0	RFID Applications ●	Electronic Passports 00 00 000000	Conclusion, references
Applications				

Applications

- Theft protection one-bit transponders
- Product labels
- Entrance systems LF, HF
- Transportation tickets
- Recreational service tickets
- Payment systems
- Electronic passports

< 17 ▶

3

Outline	RFID Principles 0	RFID Applications 0	Electronic Passports ●0 ○0 ○○○○○○	Conclusion, references
Standards				

Electronic Passports

- ICAO (International Civil Aviation Organization)
 - MRTD Machine Readable Travel Document
 - MRP Machine Readable Passport
 - Electronically readable MRP ePassport
- ISO/IEC 14443 Physical layer, low-level communication
- ISO/IEC 7816 Communication protocol
 - Application ID A0 00 00 02 47 10 01
 - File system

Outline	RFID Principles 0	RFID Applications 0	Electronic Passports 0● 00 000000	Conclusion, references
C 1 1				

Information stored in the chip

- File system (ISO/IEC 7816-4)
 - EF.DG1 Machine Readable Zone (mandatory)
 - EF.DG2 Encoded face photograph (mandatory)
 - EF.DG2 Encoded fingers (optional)
 - EF.DG3 Encoded eyes (optional)
 - •
 - EF.DG15 Public key for active authentication (optional)
 - EF.COM Version information, tag list (mandatory)
 - EF.SO_D Document Security Object (mandatory)
- K_{ENC}, K_{MAC} Document Basic Access Keys (optional)
- KPr_{AA} Active Authentication Private Key (optional)

Outline	RFID Principles 0	RFID Applications 0	Electronic Passports 00 00 000000	Conclusion, references
Security				

Security Measures

- Data groups 1-15 are write-protected
- Each data group is digitally signed (hashes and signature stored in EF.SO_D)
- Sasic Access Control Access restriction
 - Symmetrical encryption and authentication, keys derived from information in the Machine Readable Zone (MRZ)
 - Secure Messaging
 - Mandatory in European Union
- **O Active Authentication** Prevention of chip substitution
 - Asymmetrical authentication, private key stored in protected (non-readable) space, public key stored in EF.DG15
 - Optional in European Union
 - Czech Passports (as of 2007) RSA-CRT 1024 bit

Outline	RFID Principles 0	RFID Applications o	Electronic Passports ○○ ○○○○○○○	Conclusion, references
Security				

Possible attacks

- Protocols and implementations
 - Asymmetrical decryption/signing is time-consuming
 - Delays in communication tolerated relay attacks

- Power supply and communications
 - Sensitive operations symmetrical encryption/decryption, asymmetrical decryption/signing
 - Card uses the magnetic field both for its power and for communication – potential **RF power side channel** – that is what we examine now →

Outline	RFID Principles	RFID Applications	Electronic Passports	Conclusion, references
			00	
			00000	
Measurement	s			

Measuring assembly

RF power side channel - voltage induced in measuring antenna

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 国 ● ● ● ●

Outline	RFID Principles	RFID Applications	Electronic Passports	Conclusion, references
			00 00	
			00000	
Maacuramant	· c			

Extraction of amplitude

Method of extraction amplitude - filtering of carrier frequency

・ロト ・回ト ・ヨト・

Outline	RFID Principles	RFID Applications	Electronic Passports	Conclusion, references
			00	
			000 0 00	
Measurement	ts			

Extraction of amplitude I

Data acquisition:

- Setting of measurement equipment
- Adjusting of trigger and sample frequency (125 MS/s)
- Measurement of RF side channel signal while waiting for Active Authentication response

Steps of extraction:

- Computing of average period
- Fitting of samples with sine wave Least Squares Method (LSM)
- Extraction of amplitudes for each sample by 2-3 periods of sine wave

→ □ → → モ → → モ →

3

Adjusting of phase as needed during extraction

Outline	RFID Principles 0	RFID Applications 0	Electronic Passports ○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Conclusion, references
N.4				

Extraction of amplitude II

Advantages of extraction method

- Simple (small complexity) and efficient method
- LSM is guarantee of good extraction of amplitude also in case of low sampling frequency
- Selection of fitted wave length tradeoff between computational stability and loss of information
- Possibility of extraction en bloc important for the following cryptanalysis

A (1) > A (1) > A

- ∢ ≣ →

3

Outline	RFID Principles 0	RFID Applications O	Electronic Passports ○○ ○○ ○○○○○●	Conclusion, references
Management				

RSA Square and Multiply

Squaring and multiplication distinguishable by duration

Outline	RFID Principles 0	RFID Applications 0	Electronic Passports 00 00 000000	Conclusion, references
			000000	

Realy attack

- Conclusion: Passports pretty well secured, but
- Is relay attack possible?

RF signal analysis

- We are able to acquire and extract some information from the RF field
- Processor architecture if known can provide valuable information
- What signal quality is attainable from greater distance?

Outline	RFID Principles 0	RFID Applications O	Electronic Passports 00 00 000000	Conclusion, references

References

- Rosa, T.: Bezpečnost RFID v praxi (in czech). Quality and Security '08, Prague, 2008
- Kinneging, T.: PKI for Machine Readable Travel Documents offering ICC Read-Only Access, IACO Technical Report, ver. 1.1, 2004

3

- < ∃ →

- ISO/IEC 14443-1..4
- ISO/IEC 7816-3, 4