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Introduction

Objective
Provide application memory authentication: What the application 
reads from a memory location is what it last wrote there.

Security Model:
Threats:  

• Physical attacks: Tampering with bus data or memory chip
• Software (SW) Attacks: Compromised OS

Assumptions:  
• Processor chip is the security perimeter
• Application to protect is correctly written (no SW vulnerabilities)
• On-chip engine can authenticate initial state of application

Background: 
TPM, XOM, AEGIS, SP, SecureBlue want to provide trust in an 
application’s computations and protect private information.

An adversary corrupting the memory space of an application can 
affect the trustworthiness of its computations.
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Introduction to memory integrity trees

Past Work:
Building a tree over the physical address space (PAS Tree)
Building a tree over the virtual address space (VAS Tree)

Proposed Approach
A novel Reduced Address Space (RAS)
Building a tree over the RAS (RAS Tree)
Managing the RAS Tree with the Tree Management Unit (TMU)
Performance evaluation

Conclusion
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Addressing Nodes in an Integrity Tree

Leaf nodes to protect must be 
contiguous in the address space
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Physical Address Space (PAS) Tree

Majority of past work implements a PAS Tree, where:
- Tree nodes form a contiguous memory region in the PAS
- An extra mechanism to protect paged data is needed

Problem: with untrusted OS, branch splicing attack 
can be carried out

Branch splicing attack: splicing of memory data via page 
table corruption



On-Chip Root Recomputation Example 1/2
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On-Chip Root Recomputation Example 2/2
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The Branch Splicing Attack

TLB translation

generate branch 
node addresses

compare with 
on-chip root

Integrity Verification 
in a PAS Tree

Integrity Verification 
in a VAS Tree

Malicious OS
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VAS-Tree Traversal Issues

This leads to huge integrity trees:
- Very large memory capacity overhead
- Very large initialization latencies

When OS is untrusted, VAS trees are implemented:
- Tree nodes form a contiguous memory region in the VAS

Problem: Tree must cover huge segment of memory space

4-ary hash tree @ 2GHz
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Proposed Approach

The Reduced Address Space (RAS): a novel address space 
containing only pages necessary to the application’s execution

- RAS expands dynamically to fit the application’s memory needs
- RAS contains compact descriptions of memory regions not mapped in RAS, 

the Unmapped Page Ranges (UPRs)

Compute integrity tree over RAS (a RAS tree) for dramatic reduction 
of memory and initialization overheads

When application touches a previously unused page, on-chip logic 
expands RAS and adds branch to RAS tree



The Reduced Address Space (RAS)

Intermediate
Tree Nodes

Tree Root

Tree 
Leaves

RAS initially contains the application image authenticated at load-time.
Page mapped into RAS when application touches it for the first time.

This selective tree coverage allows dramatic reduction of all overheads.
Tree is built over RAS so span follows the execution of the application.
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TMU: Tree Management Unit

TMU: Architectural Support for building a Tree over a RAS:
- New TLB fields or TMU fields: RAS index (20 bits), Excluded bit 

(E) and the Mapped bit (M).
- A TLB for tree nodes

Authentication primitive and Check/Update logic
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Performance Evaluation

IPC hit less than 5% over no integrity tree and 2.5% over cached
Merkle Tree.



Conclusions

We can provide application memory authentication 
despite an untrusted OS

We reduced memory capacity overhead by 3 orders 
of magnitude on average

We reduced CPU time overhead for initialization by 
3 orders of magnitude on average
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Root Recomputation Equations

COMP1 = h h h
COMP2 = h h h
COMP3 = h h h
COMP4 = h h h
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Root Recomputation Performed by 
On-chip Authentication Engine
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X Xrecomputed 
on-chip

fetched from 
memory X leaf to verify 

(fetched from memory)

COMPi = root reCOMPutation equation for leaf position i



Branch Splicing Attack
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