
Application Memory Authentication*

David Champagne, Reouven Elbaz and Ruby B. Lee

* D. Champagne, R. Elbaz and R. B. Lee, “The Reduced Address Space (RAS) for Application Memory
Authentication”, In Proceedings of the 11th Information Security Conference (ISC’08), September 2008.

Introduction

Objective
Provide application memory authentication: What the application
reads from a memory location is what it last wrote there.

Security Model:
Threats:

• Physical attacks: Tampering with bus data or memory chip
• Software (SW) Attacks: Compromised OS

Assumptions:
• Processor chip is the security perimeter
• Application to protect is correctly written (no SW vulnerabilities)
• On-chip engine can authenticate initial state of application

Background:
TPM, XOM, AEGIS, SP, SecureBlue want to provide trust in an
application’s computations and protect private information.

An adversary corrupting the memory space of an application can
affect the trustworthiness of its computations.

Outline

Introduction to memory integrity trees

Past Work:
Building a tree over the physical address space (PAS Tree)
Building a tree over the virtual address space (VAS Tree)

Proposed Approach
A novel Reduced Address Space (RAS)
Building a tree over the RAS (RAS Tree)
Managing the RAS Tree with the Tree Management Unit (TMU)
Performance evaluation

Conclusion

P-1

P0 P1

P2 P3 P4 P5

P6 P7 P8 P9 P10 P11 P12 P13

Addressing Nodes in an Integrity Tree

Leaf nodes to protect must be
contiguous in the address space

Outline

Introduction to memory integrity trees

Past Work:
Building a tree over the physical address space (PAS Tree)
Building a tree over the virtual address space (VAS Tree)

Proposed Approach
A novel Reduced Address Space (RAS)
Building a tree over the RAS (RAS Tree)
Managing the RAS Tree with the Tree Management Unit (TMU)
Performance evaluation

Conclusion

Physical Address Space (PAS) Tree

Majority of past work implements a PAS Tree, where:
- Tree nodes form a contiguous memory region in the PAS
- An extra mechanism to protect paged data is needed

Problem: with untrusted OS, branch splicing attack
can be carried out

Branch splicing attack: splicing of memory data via page
table corruption

On-Chip Root Recomputation Example 1/2

1

On-Chip Root Recomputation Example 2/2

6

The Branch Splicing Attack

TLB translation

generate branch
node addresses

compare with
on-chip root

Integrity Verification
in a PAS Tree

Integrity Verification
in a VAS Tree

Malicious OS

Outline

Introduction to memory integrity trees

Past Work:
Building a tree over the physical address space (PAS Tree)
Building a tree over the virtual address space (VAS Tree)

Proposed Approach
A novel Reduced Address Space (RAS)
Building a tree over the RAS (RAS Tree)
Managing the RAS Tree with the Tree Management Unit (TMU)
Performance evaluation

Conclusion

VAS-Tree Traversal Issues

This leads to huge integrity trees:
- Very large memory capacity overhead
- Very large initialization latencies

When OS is untrusted, VAS trees are implemented:
- Tree nodes form a contiguous memory region in the VAS

Problem: Tree must cover huge segment of memory space

4-ary hash tree @ 2GHz

Outline

Introduction to memory integrity trees

Past Work:
Building a tree over the physical address space (PAS Tree)
Building a tree over the virtual address space (VAS Tree)

Proposed Approach
A novel Reduced Address Space (RAS)
Building a tree over the RAS (RAS Tree)
Managing the RAS Tree with the Tree Management Unit (TMU)
Performance evaluation

Conclusion

Proposed Approach

The Reduced Address Space (RAS): a novel address space
containing only pages necessary to the application’s execution

- RAS expands dynamically to fit the application’s memory needs
- RAS contains compact descriptions of memory regions not mapped in RAS,

the Unmapped Page Ranges (UPRs)

Compute integrity tree over RAS (a RAS tree) for dramatic reduction
of memory and initialization overheads

When application touches a previously unused page, on-chip logic
expands RAS and adds branch to RAS tree

The Reduced Address Space (RAS)

Intermediate
Tree Nodes

Tree Root

Tree
Leaves

RAS initially contains the application image authenticated at load-time.
Page mapped into RAS when application touches it for the first time.

This selective tree coverage allows dramatic reduction of all overheads.
Tree is built over RAS so span follows the execution of the application.

ghost nodes

Tree Expansion

Full Tree T1

a

a

1

RAS_i=0

b

RAS_i=1

b

c

RAS_i=2

c

d

RAS_i=3

d

Partial Tree T3

3

TMU: Tree Management Unit

TMU: Architectural Support for building a Tree over a RAS:
- New TLB fields or TMU fields: RAS index (20 bits), Excluded bit

(E) and the Mapped bit (M).
- A TLB for tree nodes

Authentication primitive and Check/Update logic

addr = RAS_index || offset,

Core
Instr. L1

TMU

I-TLB

D-TLB

L2 f : Auth.
primitive

TMU tags

N-TLB Tree Root

Check & Update Logic

Page
Initialization

Logic
Data L1

To mem.
Bus
Ctrl.

RAS Ctr

TMU

RAS Owner

Performance Evaluation

IPC hit less than 5% over no integrity tree and 2.5% over cached
Merkle Tree.

Conclusions

We can provide application memory authentication
despite an untrusted OS

We reduced memory capacity overhead by 3 orders
of magnitude on average

We reduced CPU time overhead for initialization by
3 orders of magnitude on average

References

[D. Champagne, R. Elbaz et al.] “The Reduced Address Space (RAS) for Application Memory
Authentication” In Proceedings of the 11th Information Security Conference (ISC’08), September
2008.

[R. Elbaz, D. Champagne et al.] “TEC-Tree: A Low Cost and Parallelizable Tree for Efficient
Defense against Memory Replay Attacks,” Cryptographic Hardware and embedded systems
(CHES), September 2007.

[B. Gassend et al.] “Caches and Merkle Trees for Efficient Memory Authentication,” High
Performance Computer Architecture (HPCA-9), February 2003.

[R. Merkle] “Protocols for Public Key Cryptosystems,” IEEE Symposium on Security and
Privacy, 1980.

[G. E. Suh et al.] “AEGIS: Architecture for Tamper-Evident and Tamper-Resistant Processing,”
Proc. of the 17th Int’l Conf. on Supercomputing (ICS), 2003.

[C. Yan et al.] “Improving Cost, Performance, and Security of Memory Encryption and
Authentication”, Int’l Symposium on Computer Architecture (ISCA’06), June 2006.

BACKUP SLIDES

Root Recomputation Equations

COMP1 = h h h
COMP2 = h h h
COMP3 = h h h
COMP4 = h h h
COMP5 = h h h
COMP6 = h h h
COMP7 = h h h
COMP8 = h h h

Leaf Position
to Verify

1
2
3
4
5
6
7
8

Root Recomputation Performed by
On-chip Authentication Engine
COMP1
COMP2
COMP3
COMP4
COMP5
COMP6
COMP7
COMP8

X Xrecomputed
on-chip

fetched from
memory X leaf to verify

(fetched from memory)

COMPi = root reCOMPutation equation for leaf position i

Branch Splicing Attack

Core

Protected
application

CPU chip

P(D1) OK

Compute
COMP7

Compute
COMP1

PAS Tree Branch Recomputation:

VAS Tree Branch Recomputation:

Core

Protected
application

CPU chip

D
1,

 D
2,

H
4,

 H
2

Compute
COMP1

re-comp’d
root ?=

MemoryNode
addr.

TLB
translation

MemoryNode
addr.

?=

Root Register

re-comp’d
root

