Implementation and Evaluation of WDDL in FPGAs

Jean-Luc DANGER Sylvain GUILLEY Ph. HOOGVORST Laurent SAUVAGE Tarik GRABA Yves MATHIEU

Institut TELECOM / TELECOM ParisTECH CNRS – LTCI (UMR 5141)

CryptArchi June 2008.

マロト イヨト イヨト

Attacks on FPGAs Counter-measures in FPGAs

イロト イヨト イヨト イヨト

Presentation Outline

- State-of-the-Art
 - Attacks on FPGAs
 - Counter-measures in FPGAs
- 2 WDDL in FPGA
 - DPL principleWDDL Dualization
- 3 Results on a fully-fledged DES
 - Synthesizers
 - Complexity
 - Performances on a Full DES
 - Attack results
- WDDL+ Optimization heuristic
- 5 Conclusions and perspectives

State-of-the-Art

WDDL in FPGA Results on a fully-fledged DES WDDL+ Optimization heuristic Conclusions and perspectives

Attacks on FPGAs Counter-measures in FPGAs

Historically, attacks target ASICs

- SPA [14],
- DPA [14, 10, 12],
- IPA [8],
- CPA [3, 4, 11],
- EMA [9, 1, 15] and
- Template attacks [6, 17, 2].

More recently, attacks on FPGAs have been reported

- 2003: SPA on Xilinx Virtex 800 [13],
- 2004: CPA on the same board [18],
- 2005: EMA on an Altera Cyclone [5],
- 2006: CPA improvements (filtering, averaging) in [19].

Attacks on FPGAs Counter-measures in FPGAs

- Logical WDDL in FPGAs by Kris Tiri [21, 23, 22]:
 - [21]: suffers a large area overhead: {INV, AND, OR} (3 gates).
 - [23]: a clustering method allows to use all AND-OR combinations (166 gates in LuT4 FPGAs).
 - [22]: automation with ASIC synthesizers
- **Physical WDDL** in FPGAs by Pengyuan Yu & Patrick Schaumont [25, 26], based on copy-and-paste:
 - [25]:Separated Dynamic Dual-Rail Logic (SDDL) fails because of glitches
 - [26]: Double WDDL (DWDDL) at least quadruples the area. Moreover, [16] shows that an integrated antenna of about 40 μm extension can measure EM emanations selectively.
- Secured designs in FPGAs based on **masked logic** are reported by François-Xavier Standaert in [20].
- An excellent overview of security issues in FPGAs [7].
- The protection of the bitstream and of the applications in a RTR context [24].

DPL principle WDDL Dualization

DPL : Dual Rail Precharge Logic for Power balancing

- Dual Rail : 1 variable $x \Rightarrow 1$ couple of signals (x_t, x_f)
- Precharge Logic : at least two phases : precharge/evaluation
- Example : WDDL

- 4 回 ト 4 ヨ ト 4 ヨ ト

 Power Consumption = α * (number of transitions) = 3 when Precharge ⇒ Evaluation and Evaluation ⇒ Precharge

DPL principle WDDL Dualization

WDDL principle

• The Precharge state '0' propagates along the logic paths.

- constraints for FPGAs:
 - Two dual LUT4 T and F such that T(0,0,0,0) = F(0,0,0,0) = 0

・ 同 ト ・ ヨ ト ・ ヨ ト

- \Rightarrow T(1, 1, 1, 1) = F(1, 1, 1, 1) = 1
- $\bullet\,\Rightarrow$ a subset of LUT instances has to be considered
- Necessity to use ASIC synthesizers

DPL principle WDDL Dualization

Dualization in LUT4

	0	ORA ANDA			MIIYO	MILYON		
	0.	1.4±	AND4		HUK2		FIOX2N -	
					$a \cdot d + b \cdot d$		$a \cdot d + b \cdot d$	
dcba	FFFE		8000		CCAA		AACC	
0000	0		0		0		0	
0001	1	F	0	0	1	۵	0	с
0010	1	5	0	•	0	n	1	0
0011	1		0		1		1	
0100	1		0		0		0	
0101	1	F	0	0	1	۵	0	с
0110	1	1	0	0	0	А	1	°,
0111	1		0		1		1	
1000	1		0		0		0	
1001	1	F	0	0	0	с	1	۵
1010	1	1	0	•	1	0	0	n
1011	1		0		1		1	
1100	1		0		0		0	
1101	1	F	0	8	0	c	1	۵
1110	1	÷.	0	5	1	v	0	л
1111	1		1		1		1	

J.-L. Danger, S. Guilley, P. Hoogvorst, L. Sauvage, T. Graba, Implementation and Evaluation of WDDL in FPGAs

イロン イヨン イヨン イヨン

3

DPL principle WDDL Dualization

Example on Altera VQM (Verilog Quartus Mapping)

```
stratix_lcell \y~20_I (
.dataa(d),
.datab(b),
.datac(c),
.datad(a),
.combout(\sqrt{y^20}));
defparam \y~20_I .operation_mode = "normal";
defparam \v~20_I .synch_mode = "off";
defparam \v~20_I .register_cascade_mode = "off";
defparam \v~20_I .sum_lutc_input = "datac";
defparam \v~20_I .lut_mask = "EFFF";
defparam \y~20_I .output_mode = "comb_only";
```

DPL principle WDDL Dualization

Positive Logic

Solution: positive Logic

No local inversion if only OR and AND are used internally to the LUT $\Rightarrow x \cdot y = x \quad f(x) \ge f(y)$

<ロ> (日) (日) (日) (日) (日)

3

Synthesizers Complexity Performances on a Full DES Attack results

ASIC Synthesizers and specific Library

- FPGA synthesizers cannot be constrained to use only a subset of instances
- ASIC synthesizers = bgx_shell or rc from Cadence with custom lib
- Number of cells in the ASIC LIBERTY cells of FPGA.

n		Complet	e	Compacted			
	plain	WDDL	positive	plain	WDDL	positive	
2	16	4	4	4	2	2	
3	256	64	18	14	11	5	
4	65536	16384	166	222	212	16	

Synthesizers Complexity Performances on a Full DES Attack results

bgx_shell synthesis

Table 1: Various substitution boxes area in $LuT{2,3,4}$ with Cadence bgx_shell synthesis in compacted libraries.

Compacted				D	ES				A	ES
library	S1	S2	S 3	S4	S5	S6	S7	S8	S	S^{-1}
LuT2 plain	219	240	207	216	202	248	204	226	1248	1230
LuT2 WDDL	304	312	290	300	286	332	288	300	1716	1708
LuT2 positive	304	312	290	300	286	332	288	300	1716	1708
LuT3 plain	128	139	119	129	121	153	125	134	692	715
LuT3 WDDL	174	188	160	174	170	202	170	176	1012	1026
LuT3 positive	186	194	174	178	172	204	184	178	1024	1028
LuT4 plain	93	103	85	89	77	114	91	93	527	540
LuT4 WDDL	118	132	114	116	116	148	116	126	742	742
LuT4 positive	138	144	134	134	136	150	134	134	758	748

J.-L. Danger, S. Guilley, P. Hoogvorst, L. Sauvage, T. Graba,

Implementation and Evaluation of WDDL in FPGAs

Synthesizers Complexity Performances on a Full DES Attack results

rc synthesis

Table 2: Various substitution boxes area in LuT $\{2,3,4\}$ with Cadence rc synthesis in compacted libraries.

Compacted				D	ES				AE	S
library	S1	S 2	S 3	S4	S5	S6	S7	S8	S	S^{-1}
LuT2 plain	235	215	229	238	236	236	234	232	1207	1232
LuT2 WDDL	312	294	300	310	310	314	314	316	1630	1668
LuT2 positive	312	294	300	310	310	314	314	316	1630	1668
LuT3 plain	168	157	153	158	164	159	168	171	834	837
LuT3 WDDL	208	186	192	196	196	200	204	204	1026	1044
LuT3 positive	210	194	196	200	196	204	206	204	1028	1054
LuT4 plain	126	121	125	136	122	124	131	125	636	641
LuT4 WDDL	158	144	152	152	156	150	156	148	788	798
LuT4 positive	160	146	152	154	156	152	156	1286	- ≣792 ≣	802

J.-L. Danger, S. Guilley, P. Hoogvorst, L. Sauvage, T. Graba,

Implementation and Evaluation of WDDL in FPGAs

Synthesizers Complexity Performances on a Full DES Attack results

イロン イヨン イヨン ・

3

Area and speed results

Table 3: Performances of the regular and the two dual-rail DES modules.

Implementation	Single-ended DES	WDDL DES	WDDL+ DES
Area	1,248 LEs	4,736 LEs	6,038 LEs
Max. Frequency	74.95 MHz	68.65 MHz	55.85 MHz
DES-ECB speed	300 Mbit/s	137 Mbit/s	111 Mbit/s
3DES-OCB speed	99 Mbit/s	45 Mbit/s	37 Mbit/s

Synthesizers Complexity Performances on a Full DES Attack results

Attack

• XY table + 5GHz acquisition platform + DPA,CPA,EMA attack

- Regular DES : DPA Attack OK on allSboxes : maximum of 11103 traces
- WDDL : CPA attack OK for only 3 Sboxes : 193028 traces
- WDDL+ : DPA attack Only one Sbox attacked with 125743 traces (failure)

Optimization principle

- Each LUT4 is a positive MUX : $s_t = x_0 \cdot sel_f + x_1 \cdot sel_t$
- A Mux tree can be build for each Sbox

 optimizations are done by using symmetries and trivial functions to remove positive MUXes

Compact WDDL+ DES Sboxes: Architecture

J.-L. Danger, S. Guilley, P. Hoogvorst, L. Sauvage, T. Graba,

Implementation and Evaluation of WDDL in FPGAs

Optimization result

	Number of LUT4					
	heuristic	bgx_shell				
# 1	102	138				
# 2	98	144				
# 3	98	134				
# 4	64	134				
# 5	106	134				
# 6	98	136				
# 7	96	150				
# 8	86	134				

J.-L. Danger, S. Guilley, P. Hoogvorst, L. Sauvage, T. Graba, Implementation and Evaluation of WDDL in FPGAs

э

Conclusions and perspectives

- WDDL can be attacked in FPGAS
- WDDL+ with positive functions greatly improves the countermeasures
- WDDL+ can be compacted in FPGAs
- Attacks can be improved by taking davantage of second order effects:

Dissemination

Related publications

- "Evaluation of Power-Constant Dual-Rail Logic as a Protection of Cryptographic Applications in FPGA", SSIRI, july 2008, Yokohama, Japan.
- "Area Optimization of Cryptographic Co-Processors Implemented in Dual-Rail with Precharge Positive Logic", FPL, september 2008, Heidelberg, Germany.
- "Place-and-Route Impact on the Security of DPL Designs in FPGAs", **HOST**, june 2008, Anaheim, CA, USA.

Valorisation

- 3 softwares deposited at the APP
- Spin-off in creation: http://www.Trust-IC.com/