

Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier

Dynamic light emission technique for optical side channel method

Jérôme Di-Battista, Martin Hlaváč (Charles Univ.), Jean-Christophe Courrege (Thales), Julie Ferrigno (CNES), Bruno Rouzeyre (LIRMM), Lionel Torrès (LIRMM)

Information Systems Security

> Introduction

Thales/CNES presentation

purpose

- > Light Emission Technique
 - Light Emission in IC
 - Photo Emission principle
 - Dynamic light emission
- Security systems application
 - Use-It pilot project
 - Example and Possibilities

Conclusion

Common laboratory CNES / Thalès

- Failure analysis laboratory
- Security evaluation (ITSEF : Information Technology Security Evaluation Facility)

Use-It Activities (PASR 2005 Project)

- Use-It : User Supplier European network for Information Technology security
- Targeted to structure the European R&D community in the Information Technology Security domain
- Final Workshop in Toulouse on July, 2007

	History <
1990	First historical industrial security lab development in 1990 in Rennes
1994	Partnership with the CNES (French Space Agency) in Toulouse Evaluation Team expertise starting in 1994, Giving access to one of the best platform in of high end tests in Europe (PICA)
1998	ITSEF creation – First accreditation in the French Scheme (DCSSI) CEACI:Centre d'Évaluation & d'Analyse des Composants de l'Information
1999	First MasterCard product evaluation
2000	First Australian product evaluated
2001	First Japanese product evaluated SCSUG / VISA PP evaluation (Selected as 1 of 3 ITSEF in the world)
2002	Japanese ITSEF training (Hardware)
2003	Japanese METI organizations training & Japanese ITSEF training (Software) First Chinese / Hong-Kong secure product qualification
	First EMV evaluation CAST - Master Card Agreement PCI PED
2004	E-Government and biometrics, and challenge GIE-CB
2005	Join Thales Security Systems. Definition of an optimized CC evaluation process First french EAL5+ IC evaluations
2006	Chronotachygraphe First french evaluation of an ICAO BAC PP

An international credible actor

Our Go to market

Common criteria

H HAC

- Chip manufacturers and Smart Cards OS designers (Atmel, Gemalto)
- More and more specific application dependent protection profiles
 - Transport, bank, passport (PP BAC & EAC), digital signature (PP SSCD)

Private schemes

- 70% of evaluation requests
- MASTERCARD: CAST and PCI PED evaluations
- GIECB, or Telecom operators

Consulting

- Pre-evaluation
- ITSEC or CC dedicated consulting (ST, pre-audit, checklist)
- Trainings

Shows the perspective following the Use-It pilot project.

> Introduction

Thales/CNES presentation

purpose

- > Light Emission Technique
 - Light Emission in IC
 - Photo Emission principle
 - Dynamic light emission
- Security systems application
 - Use-It pilot project
 - Example and Possibilities

Conclusion

Light emission (EMMI)

Principle

Protection Diode directly biased (enlarging = 20X; silicon thickness = 400 μ m)

- Emission from saturated junction
- Fault localization

THALES

nMOS transistor

Principle

Radiative desexcitation of the charger carriers in pinch-off area, created a photon visible in nearinfrared spectral range.

<u>Photon emission</u> <u>dependencies</u> :

 V_{GS} , I_{DS} , V_{DS} & transistor size

 $\begin{array}{l} \text{detector} \\ \text{system} \end{array} \left\{ \begin{array}{l} \checkmark \text{CCD silicium captor wavelength: } \lambda = 400 - 1200 \text{ nm} \\ \circ \text{r} \\ \checkmark \text{CCD HgCdTe captor wavelength: } \lambda = 900 - 1500 \text{ nm} \end{array} \right. \left(\begin{array}{l} \text{Infrared : } \lambda = 500 - 1000 \text{ nm} \\ \text{Visible : } \lambda = 400 - 700 \text{ nm} \end{array} \right)$

Dynamic Light Emission Technique

Dynamic Light emission (PICA and TRE)

- Saturation occurs briefly during commutation
- Allows to follow the electrical signal propagation
- Direct probing of sensitive data

Technique

Testing devices and Tools <

OPTICA by Credence

Technique

Static and Dynamic Emission
Microscopy

- Mepsicron II detector
- Spatio-temporal (e.g. (x,y) @ t)
- Visible to 900nm Spectral Range
- Probing specific area

> Introduction

- Thales/CNES presentation
- purpose

> Light Emission Technique

- Light Emission in IC
- Photo Emission principle
- Dynamic light emission
- Security systems application
 - Use-It pilot project
 - Example and Possibilities

Conclusion

Application

Use-It pilot project

Goal :

Demonstration of the potential of dynamic light emission for cryptanalysis.

How :

- Implemention of a « naive » AES on a µcontroller (PIC16F84A - Gold Card) open in backside, to try to recover the secret key through dynamic light emission acquisition
- Join work between Charles University (Prague), CNES and Thales Security Systems (Toulouse)

µcontroller open in backside

AES : Advanced Encryption Standard

___Application

Measurement goal <

Application

16 bytes

PIC Internal RAM (20x; silicon thickness 40 μm)

Monitor the changes on the bytes in State block during AES encryptions.

- *How?* : Dynamic light emission detection (PICA)
- **Theory :**byte flips => light is emittedbyte stays => just noise

Static vs. dynamic observation

All photons observed in one image

MAIN_LOOP

VS.

movlw	0xff
xorwf	block+0x0, f
movlw	0x <mark>aa</mark>
xorwf	block+0x0, f
movlw	0x <mark>55</mark>
xorwf	<pre>block+0x0,f</pre>
movlw	0x <mark>0</mark> 0
xorwf	<pre>block+0x0,f</pre>
call	SEND_TRIGGER
goto	MAIN_LOOP

Frames 166 ns = 1 clock cycle

Application

VS.

All photons observed in one image

Frames 166 ns = 1 clock cycle

At byte level :

Application

- Search for collisions so that byte X of the AES does not change during MixColumns operation of the first Round
- Occurrence probability 1/16
- With 256 such messages + some cryptanalysis we recover the complete key

At bit level :

- Analysis the output of the first XOR between the message and the Key = addrounkey operation in 1st round
- Recovering of the key with one execution

3rd clocks reveal the key

> Introduction

- Thales/CNES presentation
- purpose

> Light Emission Technique

- Light Emission in IC
- Photo Emission principle
- Dynamic light emission
- Security systems application
 - Use-It pilot project
 - Example and Possibilities

Conclusion

Dynamic light emission :

- Very strong side channel observation
- Applicable on other ciphers/schemes and devices
- Can be done without layout knowledge (partial reverse engineering can be done through EMMI)

Drawbacks :

- Very expensive
- Limited because of synchronization problems
- Needs physical access to the chip by non trivial IC preparation (back side thinning)

... Anyway we have proven the potential of dynamic light emission technique for security purpose

Thank you for your attention

Questions?

Contact :

Jerome.dibattista@thales-is.cnes.fr

