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Introduction

Hash Trees
Computer systems contain sensitive information:

� Private data (Photo, digital media)

� Intellectual Property, Software…

And execute sensitive applications:

� Digital Right Management (DRM)

� Distributed Computing Client and Attestation 

� Web-application (e-banking, e-commerce…)

Objectives of secure computing platforms (TPM, XOM, AEGIS, 

SP, SecureBlue) is to provide trust in computations performed 
by sensitive applications and to protect private information.

An adversary corrupting the memory space through software or 
physical attacks can affect the outcome of its computations or 

affect its trustworthiness.
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Motivations

Most embedded systems and all high end systems use off-
chip memories (RAM).
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Objectives: Provide integrity verification - i.e. tamper 
evidence – of data stored in off-chip memories and 

transferred on SoC memory interfaces

Threats:

�Code injection or data 
alteration

�Memory tampering
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Outline

Introduction

Threat Model

Authentication Primitives

Integrity Trees

- Generic Integrity Tree

- Merkle Hash Trees

- PAT: Parallelizable Authentication Tree

- Tamper-Evident Counter Tree (TEC-Tree)

Comparison

Conclusion and Current Works
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Overview

Main hypothesis: SoC Trusted

Cache
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Attacks performed at the board level are considered

� Bus probing

� Memory tampering

Attacks not considered:

� Software attacks

� Side-channel attacks

� Invasive attacks
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Active Attacks

Three kinds of active attacks are defined depending on the choice 

made by the adversary on the data to insert:

Code and data injection

� Spoofing: Random data injection

� Splicing: Spatial permutation

� Replay: Temporal permutation

Attacker motivation:

� Hijack the software execution

� Reduce the search space for key recovery or message recovery

Address bus
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Countermeasures

� 2nd Countermeasure: Enroll a Nonce in a MAC computation
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� 1st Countermeasure: On-chip storage of hash values

SoC: Trusted area

M
e

m
o

ry

C
o

n
tr

o
ll

e
r

Hash 
algorithm

Memory

External Memory

M1
M2

Hash1

Hash2

CPU 
C

a
c
h

e

� 3rd Countermeasure: Block-Level AREA (Added Redundancy Explicit Authentication)
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Principle of Integrity Trees:

Generic Integrity Tree

Stored on trusted 
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3 authentication primitives f
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Hash Tree Structure - Initialisation
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M5 M6

Read Operations – Integrity Checking
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M5 M6

Write Operations – Tree Update
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Merkle Trees
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PAT: Parallelizable Authentication Tree
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TEC-Tree Structure & Initialization
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CTR1
: a leaf node = encrypted 3-tuple (2 memory blocks + 1 counter 

in a single encrypted block)

CTR11 CTR12
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: a intermediate node = encrypted 3-tuple (3 counters in a single 

encrypted block) 
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Read Operations – Integrity Checking

Integrity Failure?
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Write Operations – Tree Update
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Conclusion & Perspectives
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Integrity trees do provide memory authentication

The three existing schemes can be viewed as recursive 
applications of an authentication primitive

The schemes have their different advantages and 
shortcomings (Parallelizability, Confidentiality…)

Related Work: Architectural support has been proposed to 
enhance performance of Integrity Trees during the steady 
state execution of an application (Cached Hash Tree).

Current work: Managing trees efficiently with an untrusted
operating system
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Thank You
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