

An Overview of Cryptographic Techniques for Memory Authentication

Reouven Elbaz and David Champagne

Department of Electrical Engineering Princeton University, US

Princeton University

- Objectives of secure computing platforms (TPM, XOM, AEGIS, SP, SecureBlue) is to provide trust in computations performed by sensitive applications and to protect private information.
- An adversary corrupting the memory space through software or physical attacks can affect the outcome of its computations or affect its trustworthiness.

evidence – of data stored in off-chip memories and transferred on SoC memory interfaces

Outline					
Introduction Threat Mod	lel Authentication Primitives	Integrity Trees	Comparison	Conclusion	
Introduction					
Threat Mode	I				
Authentication	on Primitives				
Integrity Tree	es				
- Generic In	tegrity Tree				
- Merkle Ha	sh Trees				
- PAT: Para	lelizable Authent	cation Tre	e		
- Tamper-Ev	vident Counter Tre	ee (TEC-1	Free)		
Comparison					
Conclusion a	and Current Wo	orks			

- Attacks performed at the *board level* are considered
 - ✓ Bus probing
 - Memory tampering
- Attacks not considered:
 - Software attacks
 - Side-channel attacks
 - Invasive attacks

- Three kinds of active attacks are defined depending on the choice made by the adversary on the data to insert:
 - Spoofing: Random data injection
 - Splicing: Spatial permutation
 - Replay: Temporal permutation
- Attacker motivation:
 - ✓ Hijack the software execution
 - Reduce the search space for key recovery or message recovery

Reouven Elbaz - David Champagne

CryptArchi 2008

→ 3 Existing Trees

Merkle Trees						
Introduction	Threat Model	Authentication Primitives	Integrity Trees	Comparison	Conclusion	

	Merkle Tree	
Authentication Primitive /	Hash Algorithms /	
Reference Value	Hash	
Replay – Splicing – Spoofing Detection	Yes	
Confidentiality	No	
Parallelizability	Authentication process only	
Detection Speed for Splicing / Spoofing	After Root-check	
Off-chip memory overhead	1/A-1	

PAT: Parallelizable Authentication Tree

Introduction

Threat Model

Authentication Primitives

Integrity **Trees**

Comparison Conclusion

Comparison of existing Integrity Tree

_	Merkle Tree	ΡΑΤ	
Authentication Primitive /	Hash Algorithms /	MAC Algorithms /	
Reference Value	Hash	Nonce	
Replay – Splicing – Spoofing Detection	Yes	Yes	
Confidentiality	No	No	
Parallelizability	Authentication process only	Authentication and Tree update	
Detection Speed for Splicing / Spoofing	After Root-check	1 st tree-level check / After Root-check*	
Off-chip memory overhead	1/A-1	1.5/A-1	

*Adding the address in the MAC computation allows for detection after first tree-level

: a leaf node = encrypted 3-tuple (2 memory blocks + 1 counter in a single encrypted block)

CTR11 CTR12 . CTR21

: a intermediate node = encrypted 3-tuple (3 counters in a single encrypted block)

Conclusion & Perspectives

Introduction Threat Model	Authentication Primitives	Integrity Trees	Comparison	Conclusion
---------------------------	------------------------------	--------------------	------------	------------

Comparison of existing Integrity Tree

	Merkle Tree	ΡΑΤ	TEC-Tree
Authentication Primitive /	Hash Algorithms /	MAC Algorithms /	Block Level AREA /
Reference Value	Hash	Nonce	Nonce
Replay – Splicing – Spoofing Detection	Yes	Yes	Yes
Confidentiality	No	No	Yes
Parallelizability	Authentication process only	Authentication and Tree update	Authentication and Tree update
Detection Speed for Splicing / Spoofing	After Root-check	1 st tree-level check / After Root-check*	After First Tree-level check
Off-chip memory overhead	1/A-1	1.5/A-1 2/A-1	

*Adding the address in the MAC computation allows for detection after first tree-level

Conclusion & Perspectives					
Introduction	Threat Model	Authentication Primitives	Integrity Trees	Comparison	Conclusion

- Integrity trees do provide memory authentication
- The three existing schemes can be viewed as recursive applications of an authentication primitive
- The schemes have their different advantages and shortcomings (Parallelizability, Confidentiality...)
- Related Work: Architectural support has been proposed to enhance performance of Integrity Trees during the steady state execution of an application (Cached Hash Tree).

Current work: Managing trees efficiently with an untrusted operating system

Thank You REFERENCES

[Merkle Tree] R. C. Merkle, "Protocols for Public Key Cryptography", IEEE Symp. on Security and Privacy, pages 122–134, 1980.

[Merkle Tree 2] M. Blum, W. Evans, P Gemmell, S. Kannan, and M. Naor, Checking the correctness of memories, Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages 90–99, 1991

[PAT] W. E. Hall and C. S. Jutla. Parallelizable authentication trees. In Selected Areas in Cryptography SAC 2005: 95-109

[TEC-Tree] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli and P. Guillemin, "TEC-Tree: A Low Cost and Parallelizable Tree for Efficient Defense against Memory Replay Attacks," In Proc of the Workshop on Cryptographic Hardware and embedded systems (CHES), pp. 289-302, 2007.

[Related Work] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and S. Devadas, "Caches and Merkle Trees for Efficient Memory Integrity Verification", Proceedings of Ninth International Symposium on High Performance Computer Architecture, February 2003

[Current Work] D. Champagne, R. Elbaz, and R. Lee, "The Reduced Address Space (RAS) for Application Memory Authentication", in Proceedings of the 11th Information Security Conference (ISC'08), Sept 2008.