

# Embedded testing of the source of randomness in FPGAs

#### Clock jitter evaluation and measurements

Viktor Fischer, Florent Bernard, Alain Aubert, Nathalie Bochard (fischer, florent.bernard, alain.aubert, Nathalie.Bochard)@univ-st-etienne.fr Laboratoire Hubert Curien UMR 5516 CNRS Université Jean Monnet, Saint-Etienne, France

### Outline

- Introduction
- Clock jitter as a source of randomness
  - definitions and measurements
- Embedded measurement of the clock jitter in ring oscillators
- Embedded measurement of the clock jitter in PLLs
- Conclusions



### Introduction (1/3)

### • Use of RNGs in cryptography

- Generation of cryptographic keys (symmetric, public, private) needs special security requirements
- Generation of initialization vectors
- Generation of nonces
- Generation of padding values
- Counter-measures against side-channel attacks

#### Required characteristics of RNGs in cryptography

- Good statistical parameters of the output numbers
- Unpredictability of the output
- (Inner) testability

CryptArchi 2008

- (Provable) security - robustness,

– resistance against attacks

New security requirements

### Introduction (2/3)

- Testing TRNG output
  - Tests designed for PRNGs (NIST Test Suite, DIEHARD) are commonly used  $\rightarrow$  the entropy is not evaluated
  - If these tests do not pass, the sampling frequency can be reduced or post-processing methods can be used
  - New tests were proposed specifically for TRNGs by BSI (AIS31) – entropy testing
  - New paradigm: the designers should provide
    - Mathematical model of the principle (if it exists) and/or
    - RNG-specific test (before post-processing) and testing methodology



### Introduction (3/3)

#### • Inner testability

Possibility to test the source of randomness (entropy) before a post-processing operation



- Extended inner testability
  - Enables to evaluate better the entropy: the test is equal to zero if the signal does not contain any entropy (e.g. deterministic signal)



### Sources of randomness in FPGAs

### Delay variation of logic elements

- Depending on physical processes and working conditions supply voltage (fast fluctuations possible), temperature (slow variations)
- Used in designs based on ring oscillators
- "Analogue" features of flip-flops
  - E. g. metastability low entropy can be expected

#### Jitter of clock signals

- Free-running oscillators (e.g. RC oscillator in Actel Fusion FPGA)
- On-chip PLL (or DLL) clock synthesizers in FPGAs



### Jitter as a source of randomness (1/5)

#### • Jitter

a short-term variation of an event from its ideal position in time

#### • Jitter measurements

- Phase jitter
- Period jitter
- Cycle-to-cycle jitter
- Timing jitter and time-interval error (TIE)



Different measurements of the same jitter

- Jitter components
  - Random (Gaussian) jitter
  - Deterministic jitter

CryptArchi 2008

### Jitter as a source of randomness (2/5)

### • Phase jitter $\delta_n$

- phase advance of the observed clock from an ideal clock with period  $T_0$  made in discrete time intervals  $nT_0$ 

Cycle occurrences of a noisy clock signal:





### Jitter as a source of randomness (3/5)

### • Period jitter $\delta'_n$

 $\delta'_n = (\underline{t_n} - \underline{t_{n-1}}) - T_0 = \delta_n - \delta_{n-1}$ 

- the difference between measured adjacent clock periods and the ideal clock period  $T_0$ The first difference function

of the phase jitter

Ideal Clock Signal Periods





### Jitter as a source of randomness (4/5)

• Cycle-to-cycle jitter  $\delta''_n$ 

- the difference between between successive clock periods

The first difference function of the period jitter, the second order function of the phase jitter





### Jitter as a source of randomness (5/5)

### Timing jitter

- The mean square average value of a time-interval error (TIE)
- Time-interval error TIE
  - The difference between two clock edges separated by an ideal edge delay of N clock periods
    - = A measure of the timing error accumulated during the interval  $\tau$

TIE $(t, \tau) = \delta(t + \tau) + \delta(t)$ , where  $\tau = N \cdot T_0$ 



Note: If t = 0 and  $\delta(t) = 0$ , TIE = Phase jitter!

CryptArchi 2008

## Example of a RO-based TRNG

• TRNG of Sunar et al. [IEEE TC 2007]



- Source of randomness jitter accumulated during one period clk
- Many independent (?) ring oscillators are used to increase entropy
- "Provable security" based on deep probability analysis
- Sophisticated post-processing fault resilient function
- Aimed for FPGAs

 Inner tests feasible (but not extended inner tests) CryptArchi 2008

# Embedded measurement of the jitter in ring oscillators (1/2)

#### The method



Results in HW - Actel Fusion EB:

- 7-element RO, f = 96 MHz, time base 10.000 periods on 30 MHz
- Gaussian random jitter with standard deviation  $\sigma$  = 33 ps/gate

CryptArchi 2008

### Embedded measurement of the jitter in ring oscillators (2/2)

#### Results in HW - Altera Stratix II NIOS II EB:

- 7-element RO, f = 196 MHz, time base 100 periods on 50 MHz
- Huge deterministic jitter detected switching power supply noise





# Example of a PLL-based TRNG

• TRNG of Fischer & Drutarovsky [CHES 2002]



- One or two PLLs generate frequency-related clocks  $f_2 = f_1 \cdot K_M / K_D$
- Source of randomness tracking jitter
- Entropy extraction by a DFF and decimator one random bit per  $K_D$  periods of clk1
- No post-processing needed (depending on  $K_M$  and  $K_D$ )
- Easy to implement in FPGAs (containing PLLs)
- Extended inner tests feasible

### Embedded measurement of the jitter in PLLs (1/4)

The method







# Embedded measurement of the jitter in PLLs (3/4)

- Dynamic restitution of a CLK2 clock period mean value over 100 periods T<sub>q</sub>
- Note: the clock jitter corresponds to the width of the rising/falling edge
- Board: Altera Stratix II EB

 Generator coefficients: K<sub>M</sub>=260 K<sub>D</sub>=203

CryptArchi 2008



Fischer, Bernard, Aubert, Bochard: Sources of Randomness in FPGAs

# Embedded measurement of the jitter in PLLs (4/4)

- Evolution of the CLK2 clock rising edge
- Board: Altera Stratix II EB
- Generator coefficients: K<sub>M</sub>=260 K<sub>D</sub>=203
- Tq = 260 \* TCLK1 =
   = 203 \* TCLK2 = 1.4 us
- So the time interval depicted is: 1000 \* Tq = 1.4 ms



#### CryptArchi 2008

### Conclusions

- Security of the RNG can be increased using embedded online tests of the source of randomness
- Two online tests have been proposed for two different kinds of jitter
  - timing jitter used in RO-based TRNG
  - tracking jitter employed in PLL-based TRNG
- Both kind of test were able to detect deterministic jitter, which could be used to manipulate TRNG output
- Next step TRNG output manipulation by introducing a deterministic jitter to the clock signal

