
A Real-World Attack Breaking A5/1
within Hours

Timo Gendrullis, Martin Novotný, Andy Rupp
Ruhr University Bochum

Outline

A5/1 cipher
COPACOBANA
Attack on A5/1 cipher
Architecture of the A5/1 cracker
Optimization
Implementation results

A5/1 Cipher

Stream cipher
– produces the keystream KS being

xored with the plaintext P
C = P ⊕ KS

Encrypts GSM communication
– GSM communication organized in

bursts
– 1 burst = 114 bits in each direction

Architecture of A5/1:
3 linear feedback shift registers (LFSRs)
LFSRs irregularly clocked

– the register is clocked iff its clocking
bit (yellowyellow) is equal to the majority of
all 3 clocking bits ⇒ at least 2
registers are clocked in each cycle

A5/1

Algorithm of A5/1

1. Reset all 3 registers
2. (Initialization) Load 64 bits of key K +

22 bits of frame number FN into 3
registers

–K and FN xored bit-by-bit to the
least significant bits

–registers clocked regularly
3. (Warm-up) Clock for 100 cycles and

discard the output
–registers clocked irregularly

4. (Execution) Clock for 228 cycles,
generate 114+114 bits (for each
direction)

–registers clocked irregularly
5. Repeat for the next frame

COPACOBANA

Highly parallel computing machine
120 FPGAs (Spartan 3 – 1000)
Common controller ⇒ shared interface
high computation power × low communication bandwidth

Developed at Christian-Albrechts-University Kiel
and Ruhr-University Bochum
http://www.copacobana.org (a suffix is “.org”, not “.de”!)

Modular design
– Backplane
– FPGA modules (each with 6 low-cost FPGAs)
– Controller card with USB/Ethernet interface

Easily extendable
– Up to 20 FPGA modules with 6 FPGAs each
– Connect multiple COPACOBANAs via USB/Ethernet

COPACOBANA: Basic Design

Attack on A5/1

Based on the guess-and-determine attack by
Keller&Seitz (2001)

Goal: From the known keystream KS to determine the
content of all 3 registers (internal state)

Repeat:
1. Guess the content of shorter registers R1 and R2

(19+22=41 bits)
2. Try to run the cipher, inspect the potential content of

register R3
1. from the known keystream derive the MSB of R3
2. from clocking/non-clocking of R3 derive the

clocking bit of R3
3. When R3 is completed, run the cipher, compare

output with the known keystream
4. If not successful, goto 1

Example

Step (0):
– calculate

R3[22] = R1[18]+R2[21]+KS[0] = 0
– choose R3[10] = 0 ≠ R1[8]
– clocking bits 1,0,0 ⇒ clock R2 and R3

Step (1):
– calculate

R3[21] = R1[18]+R2[20]+KS[1] = 0
– choose R3[9] = 0 ≠ R1[8]
– clocking bits 1,1,0 ⇒ clock R1 and R2

Step (2):
– R3 was not clocked, therefore also

R3[21] = R1[17]+R2[19]+KS[2]
but: R1[17]+R2[19]+KS[2] = 1 !!!
⇒ contradiction, a(1) impossible

a(0)

a(1)

Guessing engine

FPGA hosts several guessing engines

Optimization

Original approach:
The tree is traced always from the root

Optimization:
When tracing from the root, the state of
the guessing engine is stored at certain
depth (at recovery pointrecovery point) and later
reloaded

Reduces #clock cycles to reach the leaf
of the decision tree:

depth of recovery point

cl

oc
ks

Implementation results

11.40 h

14.36 h

16.31 h

estim. measured

300.0015360153607680Spartan3-
1000

11.78 h92.00104.651056210141749423 optimized

13.58 h92.00102.4294179636661432 standard

72.0081.851057610730695336 standard

maximum timeftest

[MHz]
fmax

[MHz]
#LUTs#FFs#slices#guessing

engines

Average time to reveal the internal state:

5.89 hours

