

A Real-World Attack Breaking A5/1 within Hours

Timo Gendrullis, Martin Novotný, Andy Rupp Ruhr University Bochum

Outline

hg Horst Görtz Institute for IT-Security

A5/1 cipher COPACOBANA Attack on A5/1 cipher Architecture of the A5/1 cracker Optimization Implementation results Stream cipher

 produces the keystream KS being xored with the plaintext P

 $\mathbf{C} = \mathbf{P} \oplus \mathbf{KS}$

Encrypts GSM communication

- GSM communication organized in bursts
- 1 burst = 114 bits in each direction

Architecture of A5/1:

3 linear feedback shift registers (LFSRs) LFSRs irregularly clocked

 the register is clocked iff its clocking bit (yellow) is equal to the majority of all 3 clocking bits ⇒ at least 2 registers are clocked in each cycle

Horst Görtz Institute

Algorithm of A5/1

hg Horst Görtz Institute for IT-Security

- 1. Reset all 3 registers
- (Initialization) Load 64 bits of key K +
 22 bits of frame number FN into 3 registers
 - –K and FN xored bit-by-bit to the least significant bits
 - -registers clocked regularly
- 3. (Warm-up) Clock for 100 cycles and discard the output

-registers clocked irregularly

 (Execution) Clock for 228 cycles, generate 114+114 bits (for each direction)

-registers clocked irregularly

5. Repeat for the next frame

COPACOBANA

hg Horst Görtz Institute for IT-Security

Highly parallel computing machine 120 FPGAs (Spartan 3 – 1000) Common controller \Rightarrow shared interface

high computation power × low communication bandwidth

Developed at Christian-Albrechts-University Kiel and Ruhr-University Bochum <u>http://www.copacobana.org</u> (a suffix is ".org", not ".de"!)

COPACOBANA: Basic Design

Modular design

- Backplane
- FPGA modules (each with 6 low-cost FPGAs)
- Controller card with USB/Ethernet interface

Easily extendable

- Up to 20 FPGA modules with 6 FPGAs each
- Connect multiple COPACOBANAs via USB/Ethernet

Based on the guess-and-determine attack by Keller&Seitz (2001)

Goal: From the known keystream **KS** to determine the content of all 3 registers (internal state)

Repeat:

- Guess the content of shorter registers R1 and R2 (19+22=41 bits)
- 2. Try to run the cipher, inspect the potential content of register **R3**
 - 1. from the known keystream *derive* the MSB of R3
 - 2. from clocking/non-clocking of **R3** *derive* the clocking bit of **R3**
- 3. When **R3** is completed, run the cipher, compare output with the known keystream
- 4. If not successful, goto 1

Attack on A5/1

Example

hg Horst Görtz Institute for IT-Security

Step (0):

Guessing engine

FPGA hosts several guessing engines hosts for IT-Security

Original approach: The tree is traced always from the root

Optimization

Optimization:

When tracing from the root, the state of the guessing engine is stored at certain depth (at recovery point) and later reloaded

Reduces #clock cycles to reach the leaf of the decision tree:

depth of recovery point

#guessing engines	#slices	#FFs	#LUTs	f _{max}	f _{test}	maximum time	
				[MHz]	[MHz]	estim.	measured
36 standard	6953	10730	10576	81.85	72.00	16.31 h	
32 standard	6614	9636	9417	102.42	92.00	14.36 h	13.58 h
23 optimized	7494	10141	10562	104.65	92.00	11.40 h	11.78 h
Spartan3- 1000	7680	15360	15360	300.00			

Average time to reveal the internal state:

5.89 hours