

Prototyping Secure Triple Track Logic (STTL) robustness against DPA & DEMA on FPGA

V. Lomné – R. Soares - T. Ordas P. Maurine – L. Torres – M. Robert

- 2. Hiding at the cell level
- 3. Secure Triple Track Logic
- 4. Results
- 5. Conclusion

- 2. Hiding at the cell level
- 3. Secure Triple Track Logic
- 4. Results
- 5. Conclusion

5

In order to evaluate security robustness of different logic styles, we implemented a sensitive sub-module of DES cipher function :

- We applied DPA, CPA, DEMA & CEMA (single & multi-bits)
- Inputs : all transitions on 64 possible values averaged 50 times

6

DPA & DEMA measurement setup

Probe Tektronix CT1 5mV/mA

Oscilloscope Agilent Infinium S4830B 600MHz 4GSa/s

FPGA Xilinx Spartan3 supplied by 1,2V battery

1mm passive magnetic probe

Implementation of Single Rail logic DES sub-module

Successful DPA & DEMA pictures :

DPA on bit0

CEMA on Hamming Weight

Near Field Scan in Time Domain

- 2. Hiding at the cell level
- 3. Secure Triple Track Logic
- 4. Results
- 5. Conclusion

2. Hiding at the cell level

10

DPA countermeasures :

- Masking
 - depends from a cryptographic algorithm
 - breakable by HODPA
- Shuffling time dimension
 - breakable by preprocessing misaligned power traces
 - breakable by leading analysis in the frequency domain
- Hiding amplitude dimension at the cell level
 - requires more area & power
 - examples : Dual Rail, WDDL, STTL

2. Hiding at the cell level

- Dual Rail logic principle : 2 wires for 1 logical signal
 - 1 wire for the logical value
 - 1 wire for the complementary of the logical value
- 2 phases : precharge & evaluation
- Dual Rail logic cells always consume the maximum amount of power
- Loss of Dual Rail benefits if the conditions below are not satisfied :
 - same load capacitance (CT=CF)
 - same transition time
 - gates switch at the same time

2. Hiding at the cell level

12

Implementation of Dual Rail logic (DIMS) DES sub-module

DPA results show that previous conditions aren't satisfied Successful DPA picture :

DPA on bit0

- 2. Hiding at the cell level
- 3. Secure Triple Track Logic
- 4. Results
- 5. Conclusion

STTL : principles

STTL properties :

Quasi data independent power consumption

Quasi data independent propagation delay

Quasi data independent electromagnetic emissions ?

16

0

Mapping on FPGA : STTL AND2 gate v1

STTL v2 AND2 GATE :

STTL sub-module after Place & Route

			-				_		-		-		-	- ·	-	- I
ייט גו גו גו _ו י					1	4	-1 F			L.	L	Ц		1	Ц	ЦĮ
] []				<i></i>	2				P						
						7				Ø						
in n n n l	1 1			1 🗙	E			1 2		ĥ			п			
				7	4	H			R							
		0.0			12	2		1 👌		1	5	p.				
		÷ 1 %		1	5	Ű,			M	N.			М.			\mathbf{D}
								1 1			N.S.					
		1		1 A						2		N	1	7	8	
				3 85						7	1		KT m		4	
										10	Ë.		5	7	L.	
											4	Ľ-				Ľ
			PSA IS		8				X			M		2	11	
						2	2	1 17					<u>I</u> I	Ľ١	18	
				3 3			7 1			5	5		J n	12		
			10	163	1				A	R	5			洧	5	
	2 				193				175	5	Ħ	1			150	
	ΠÊ								-		100	17		L.	Å.	
· 네 비 비 비 비 비 비					ŧ.	Cr			ΡL	Ľ,		4	╸┛╜	ΡI	٢_	
						4		1 14		ZI -	1		ЫI	10		
					X1			10.4	No.		2	2	АI	1		
				TIM	3	1					1	1				
				1 1		7			d,		21	Η,		Π;		
									G.	H					-	
								ΗÅ			Z.F					
									1	1	Ц	Ц	Ц	L.		
						ħ.				1		D.	П			
					1		1 5									
			1		N.	N.	3						0			

- I. Power & EM analysis flow
- 2. Hiding at the cell level
- 3. Secure Triple Track Logic
- 4. Results
- 5. Conclusion

Timing analyses & required area for sub-module in different logic styles :

19

	SR	DR	STTL v1	STTL v2
Average (ns)	22,23	54,56	102,64	83,05
Min (ns)	15,62	50,36	102,64	83,05
Max (ns)	26,60	58,26	102,64	83,05
Area (slices)	175	504	994	529
Area (%)	9.00%	26.00%	51.00%	27.00%

Percentage of successful attacks functions on logic style :

	Single Rail	Dual Rail	STTL v1	STTL v2
DPA	75.00%	90.00%	6.00%	5.00%
DEMA	99.00%	NA	70.00%	NA

- 2. Hiding at the cell level
- 3. Secure Triple Track Logic
- 4. Results
- 5. Conclusion

- STTL seems robust against DPA & CPA
 - Quasi data independant computation time
 - Quasi data independant power consumption
- EM analysis seems more efficient than Power analysis

- Contactless analysis
- Local analysis rather than full chip analysis
- SEMA provides a good idea of the chip floorplan
- STTL is more resistant to EM analysis than Single Rail logic, however it is not sufficient
 - 30% of successful analyses -> 70% of keys are disclosed
 - The (power & EM) balancing vanishes with the probe positionning ?

Thank you for your attention !

22

Any questions ?

Appendices A

Filtering low frequencies may increase success of DPA & CPA