Identifying the IP in an FPGA

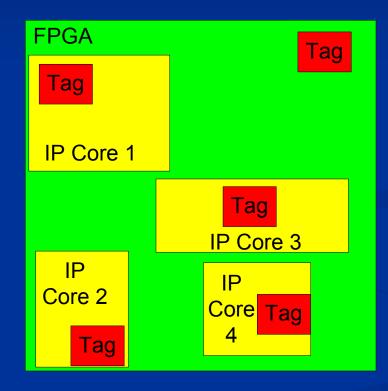
Carol Marsh, Tom Kean and David McLaren, Algotronix Ltd and iSLI

CryptArchi 2008, Trégastel, France, 1 - 4 June 2008

02/04/06

The Tag Idea

The idea is to provide a tag which can be added to an FPGA, ASIC or IP Core which will uniquely identify the design


The tag must communicate with external detection equipment via a covert channel.

Temperature will be used as the communications channel

www.algotronix.com www.sli-institute.ac.uk

The Tag Idea

An FPGA design could contain many tags

Idea is detect IP rather than protect IP

www.algotronix.com www.sli-institute.ac.uk

Why is an ID Tag Required?

Chip Photo © Xilinx Inc.

FPGA package markings identify the FPGA chip, not the user designs within

Why does it matter?

Recognition of the user's design within an FPGA is required for:

- Customer Support Determining design version in a failing product
- Detecting Misuse or Theft of entire user design
- Detecting Misuse or Theft of IP cores

What if?

after a few months you just can't read the package marking any more?

What if?

someone maliciously re-marks the package?

- changes speed grade to increase value
- changes date code to sell recycled 'ghost' chips as new

- puts your logo on a cheaper competitive product

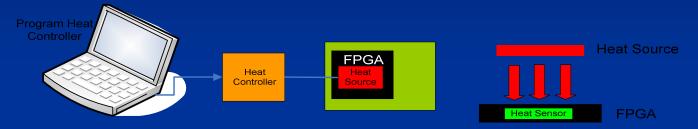
Semiconductor Insights tried to purchase sub-60 nanometer devices from Samsung and Toshiba, it took several attempts before they received legitimate components. In one case they ordered a Toshiba 16-Gbit 56nm MLC NAND flash and received a remarked Samsung 4-Gbit 65-nm MLC NAND flash, which was not only too slow but also had a different pin out. Quirk, G. Under the Hood Special Report: Counterfeit parts, legitimate woes. 8 June 2007, EETIMES

Requirements...

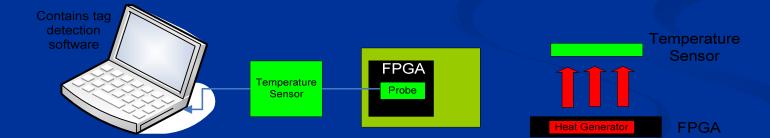
FPGA design identification should be just as easy as reading package markings:

- No support from software in the system containing the FPGA is required
- No documentation of chip pin out is required
- Works even when the bitstream is encrypted
- Very low cost

All you need is to be able to see the package lid


And...

It would be nice if an FPGA design labelling scheme could improve on ink markings by:


- Tracking IP cores within a design as well as complete designs
- Tracking in-the-field changes to the bitstream
- Resisting tampering and forgery

Introducing DesignTag[™]

There are 2 types of DesignTag: A passive tag – Heat sensor circuit within an FPGA which lies dormant until it detects a heat signature from an <u>external source</u>

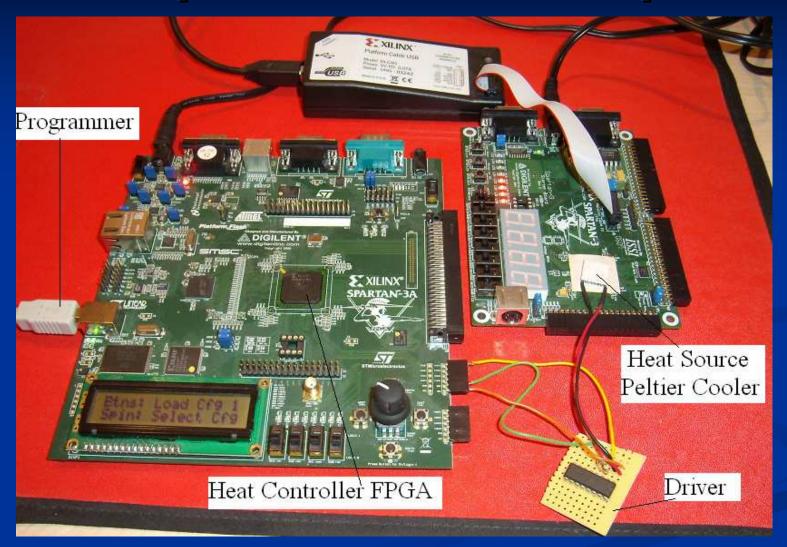
An active tag – Heat generator circuit within an FPGA continuously outputting a signature which is detected using an external sensor.

The Active DesignTag[™] is now available from Algotronix Ltd

02/04/06

Passive DesignTagTM

Three part solution:


- A small, low power heat sensor circuit which is added to the FPGA design
- A heat source which provides the temperature signature
- A heat controller which controls the heat source

This is currently under development

Heat Source

- A Peltier Cooler which is taped to lid of chip package is used as the heat source
- In the experiments an FPGA on a Xilinx Spartan 3A Evaluation Board is used as the heat controller
- The FPGA is programmed via a laptop with the required 64 bit tag code
- Future developments
 - use PocketPC to control the heat source rather than a bulky laptop and FPGA Evaluation Board

Experimental Set Up

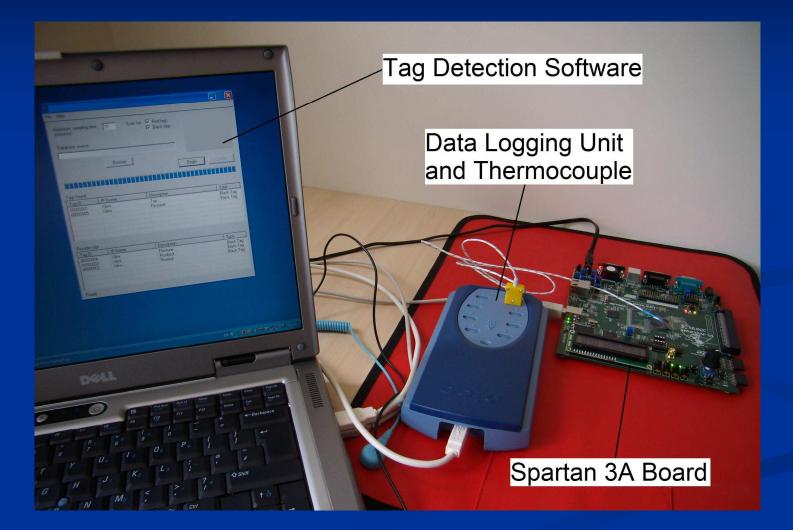
How it works

- The heat source communicates with the internal sensor circuit by modulating chip package temperature
- Chip packages are designed to be 'transparent' to heat making this a very practical signalling mechanism
- The heat sensor tag in the FPGA detects the heat source and extracts the tag signature
- Response is generated when extracted tag matches design's tag
- It takes approximately 15 minutes to transmit the 64 bits of data
- Each DesignTag[™] requires 225 slices
- 0.5mW additional power per tag when operating

Active DesignTag[™]

Three Part Solution:

- A small, low power heat generator circuit which is added to the FPGA design
- A 'reader' which can detect the presence of the tag when held against the chip package
- A database of tag codes and corresponding design information

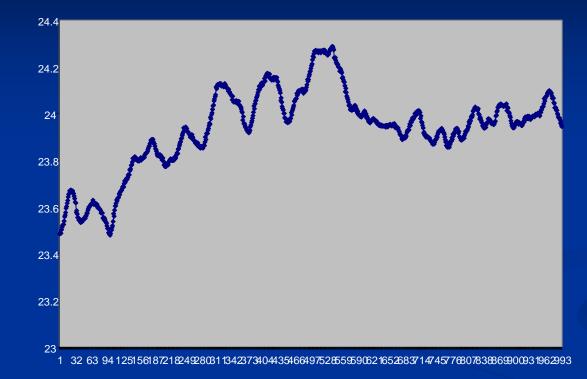

Tag Reader

- Low cost (\$3) thermocouple which is taped to lid of chip package
- Off the shelf data logging unit interfaces thermocouple to laptop
- Signal processing software running on laptop decodes the tag signal

Future developments

- use PocketPC with thermocouple interface on CompactFlash card rather than bulky laptop and data logger
- look at non-contact (infra red) temperature measurement

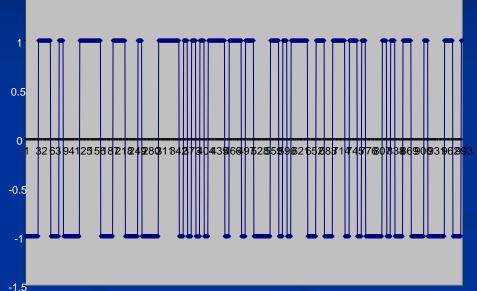
Experimental Set Up


How it works

- The tag communicates with the external reader by modulating the temperature of the chip package
- Package temperature changes are around 0.1 deg C and less than random temperature variations
- Spread spectrum code allows tag signal to be extracted from noise
- Time to detect tags depends on number of tags in FPGA and location where experiment is run
- Example: demo at tradeshow booth, roughly 3 min to find first tag, all five tags found in less than 10 min

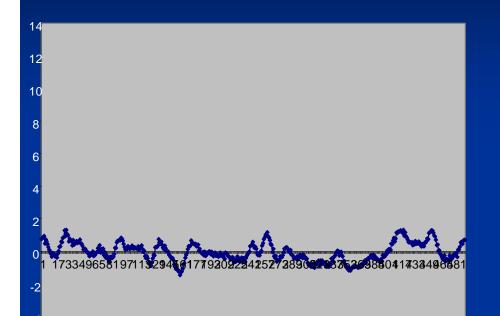
Demodulation Process

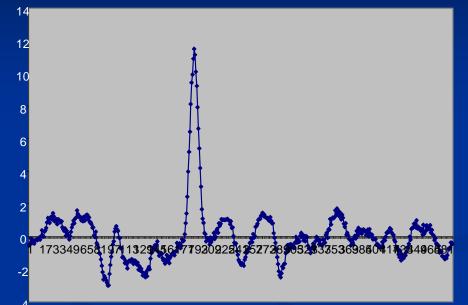
- For experiment using a Spartan 3A evaluation board with Xilinx demonstration design containing PicoBlaze CPU, VGA driver, audio driver etc
- One tag added to the Xilinx demonstration design
- Software matches a correct and incorrect tag against the data from the sensor
- Next few slides show waveforms at the key stages of the tag demodulation process within the reader
- Each DesignTag[™] requires 152 slices
- 5mW additional power per tag when operating, can be switched off 15 min after power on


Package Temperature

Chip gradually heats up after power on due to normal activity – most of this temperature variation is caused by user design and environment, not tags

Differentiate + Quantise





Interested in temperature changes, not absolute values

Expected Tag Code

Correlation

No Match

Match

Summary

- FPGA package markings identify the FPGA chip, not the IP in the FPGA
- DesignTagTM provides a method of identifying the IP using temperature as the communications channel
- Passive DesignTag[™]: External heat source with heat sensor in FPGA Need to know tag code your looking for
- Active DesignTagTM: Heat source in FPGA with external heat sensor Checks for all tags in the database First product released in DesignTagTM range