
Realtime A5/1 Attacks with
Precomputation Tables

Martin Novotný, Andy Rupp
Ruhr University Bochum

Outline

Time-Memory Trade-off Tables
– Original Hellman Approach
– Distinguished points
– TMTO with multiple data
– Rainbow tables
– Thin-rainbow tables

Architecture of the A5/1 TMTO engine
Implementation results

Two extreme approaches

Brute force attack

Check all combinations of a key K online
– time T = N = 2k

– memory M = 1

Table lookup

(For a given plaintext P)
All pairs key-ciphertext {Ki, Ci} precomputed
and stored (sorted by C)

Online phase: Look-up C in the table (and find
K)

– time T = 1
– memory M = N = 2k

Time-Memory Trade-Off
(Hellman, 1981)

Compromises the above two extreme approaches

Precomputation phase: For a given plaintext P:
– precompute (ideally all) pairs key-ciphertext {Ki, Ci};
– store only some of them in the table.

Online phase:
– Perform some computations;
– lookup the table and find the key K.

• time T = N2/3

• memory M = N2/3

Precomputation (offline) phase
Idea: Encryption function E is a pseudo-random function

C = EK(P)

Pairs {Ki, Ci} organized in chains
– Ci is used to create a key Ki+1 for the next step
– E is pseudo-random ⇒ we perform a pseudo-random walk in the keyspace

R – reduction function (DES: C has 64 bits, K has 56 bits)
f – step function f(x) = R(Ex(P))

EK C

P

P

E R

f P

E R

f P

E R

f
K1 EPK2 K3 KtC1 C2 CtSP =

1234 7A3D

plaintext P is the same

28DF B05B 8EC0

Precomputation (offline) phase
1234 SP1 = k10 →f k11 →f k12 →f … →f k1t-1 →f k1t = EP1 8EC0
1235 SP2 = k20 →f k21 →f k22 →f … →f k2t-1 →f k2t = EP2 2A1B
1236 SP3 = k30 →f k31 →f k32 →f … →f k3t-1 →f k3t = EP3 4D3C

… … …
9999 SPm = km0 →f km1 →f km2 →f … →f kmt-1 →f kmt = EPm 02E3

m chains with a fixed length t generated

Only pairs {SPi, EPi} stored (sorted by EP) ⇒ reducing memory requirements

P

E R

f

P

E R

f

P

E R

f
SPj = kj0 kjt = EPjkj1 kj2 kjt-1

Online phase

Given C.
1. Compute y1 = R(C);

Lookup table if y1 = EPj
1. if YES, then (potentially) K = kjt-1⇒ compute kjt-1 = f(f(f(…f(SPj) …))), stop

2. if NOT, then continue:

2. Compute y2 = f(y1) = f(R(C));
Lookup table if y2 = EPj
1. If YES then (potentially) K = kjt-2⇒ compute kjt-2 = f(f(f(…f(SPj) …))), stop

2. if NOT, then continue:

3. Compute y3 = f(y2) = f(f(y1)) = f(f(R(C)));
Lookup table if y3 = EPj

(t-1)×

(t-2)×

R
C y1

f f E R
fSPj = kj0 y1 = EPjkj1 kj2 kjt-1

f
K = C

f fE R
fSPj = kj0 y2 = EPjkj1 y1kjt-2

f
K = C

Birthday paradox problem

m chains of fixed length t generated
R is not bijective ⇒ some kij collide. Collisions yield in chain merges or in

cycles in chains

Matrix stopping rule: Hellman proved that it is not worth to increase m or t
beyond the point at which

m⋅t2 = N
(the coverage of keyspace does not increase too much)
He recommends to use r tables, each with different reduction function R

Since also N = m × t × r, then r = t
Hellman recommends m = t = r = N1/3

Hellman TMTO – Complexity

Precomputation phase
– Precomputation time PT = m × t × r = N
– Memory M = m × r = N2/3

Online phase
– Memory M = N2/3

– Online time T = t × r = t2 = N2/3

– Table accesses TA = T = N2/3

Tradeoff curve
M2T = m2 t2 t2 = m2 t4 = N2

M2T = N2

Distinguished points
(Rivest, ????)

Slight modification of original Hellman method
Goal: to reduce the number of table accesses TA (in Hellman TA = N2/3)
Distinguished point is a point of a certain property (e.g. 20 most significant

bits are equal to 0).

000000000000000000000010101001101100101010010111110010110101

Distinguished points

Precomputation phase
– chains are generated until the distinguished point (DP) is reached

• if the chain exceeds maximum length tmax, then it is discarded and the next chain is generated
• the chain is also discarded if the DP has been reached, but the chain is too short tmin (to have

better coverage)

– triples {SPj, EPj, lj} stored, sorted by EP (lj is a length of the chain)
Online phase

– compute yi+1 = f(yi) iteratively until the DP is reached (or the maximum
length tmax is exceeded)

– lookup the table (only) if the distinguished point is reached

Advantages
– Table accesses TA = r = N1/3 (c.f. TA = t × r = N2/3 in original Hellman)
– Chain loops are not possible

TMTO with multiple data
(Biryukov & Shamir, 2000)

Important for stream ciphers: To reveal an internal state Li having k bits we
need only k bits of a keystream KSi

0100111101101010110100101010010100010010100010011110110001

Having D data samples of the ciphertext C (or the keystream KS)
we have D times more chances to find the key K (or the internal state L)

⇒ We calculate r/D tables only
⇒ we save the precomputation time PT and the memory M
× online time T and the number of table access TA remain unchanged

KS0
L0

KS1
L1

KS2
L2

KS3
L3

Rainbow tables
(Oechslin, 2003)

Idea: to use different reduction function Ri in each step of chain
generation, hence the step functions are:

f1 f2 f3 … ft-1 ft

Online phase:
– Compute y1 = Rt(C), compare with EPs, if no match, then
– Compute y2 = ft(Rt-1(C)), compare with EPs, if no match, then
– Compute y3 = ft(ft-1(Rt-2(C))), compare with EPs, if no match, then
– …

P

E R1

f1

P

E R2

f2

P

E Rt

ftSPj = kj0 kjt = EPjkj1 kj2 xjt-1

Rainbow tables

Just one table (or only several tables) generated,
– m = N2/3 (t reduction functions used ⇒ the table can be t times longer),
– t = N1/3

Advantages
– chain loops impossible
– point collisions lead to chain merges only if the equal points appear in the

same position of the chain
– online time T about ½ of the online time of original Hellman (for single data)
– number of table accesses the same like for the Hellman+DP method (for single

data)
Disadvantages

– Inferior to the Hellman+DP method in the case of multiple data (D > 1)
(online time T and the number of table accesses TA are D-times greater)

Thin-rainbow tables

The way to cope with the rainbow tables when having multiple data
The sequence of S different reduction functions is applied k-times

periodically in order to create a chain:

f1 f2 f3 … fS-1 fS f1 f2 f3 … fS-1 fS … … f1 f2 f3 … fS-1 fS

Chain length
t = S × k ⇒ S = t/k

Thin-rainbow + DP (to reduce # table accesses TA):
– DP criterion is checked after each fS

f1 f2 f3 … fS-1 fS f1 f2 f3 … fS-1 fS … … f1 f2 f3 … fS-1 fS

– We store only chains for which kmin < k < kmax

Candidates for implementation
(in case of multiple data, D>1)

1. Hellman + DP
2. Thin-rainbow + DP

Both have the same precomputation complexity
Both have comparable online time T and # table accesses TA

Hellman+DP checks DP-criterion after each step-function f
Thin-rainbow+DP checks DP-criterion after fS only
⇒ We implemented Thin-rainbow+DP

– simpler HW, better time/area product
– S ≅ 214; k ≅ D ≅ 26

A5/1 TMTO basic element

XOR

A5/1 core #1

A5/1 core #2 XOR

load

load/run_2

load/run_1

re-randomization function

Calculates one chain
Two-stroke mode:

1. core #1 generates keystream, core #2 is loaded
2. core #2 generates keystream, core #1 is loaded

A5/1 TMTO engine

XOR

A5/1 core #1

A5/1 core #2 XOR

load

load/run_2

load/run_1

re-randomization function

TMTO
element

TMTO
element

TMTO
element

point register

start point generator

CONTROLLER

re-randomization
function

generator

chain memory
(start point,
birthdate)

FIFO

DP
checker

timer

C
O

N
TR

O
L

&
EV

AL
U

AT
IO

N
EX

EC
U

TI
O

N

234 TMTO elements

⇒ 234 chains computed in parallel in
Spartan 3-1000 FPGA

TMTO elements share
the DP-checker

Implementation results

COPACOBANA is able to perform up to 236 step-functions fi per second
– 234 TMTO elements/FPGA
– 120 FPGAs
– maximum frequency fmax = 156 MHz
– one step-function takes 64 clock cycles

234 × 120 × 156⋅106 / 64 ≅ 236

Parameter choices for D=64

0.4222173.50.7947.7[24 , 28]6215237

0.552208.55.0684.4[24 , 26]5214240

0.6022127.83.4884.4[23 , 26]5215239

0.602207.07.0484.4[23 , 26]5214240

0.6322010.94.8595.4[24 , 27]5214240

0.6722136.33.2595.4[23 , 27]5215239

0.8622127.87.49337.5[23 , 26]5215241

success
ratio

SR

table
accesses

TA

online
time

OT [s]

disk
usage
DU [TB]

precomp.
time
PT [days]

#seq. in
chain

k

DP
criterion
d [bits]

rainbow
sequence

S

chains
computed

m

