

Realtime A5/1 Attacks with Precomputation Tables

Martin Novotný, Andy Rupp Ruhr University Bochum

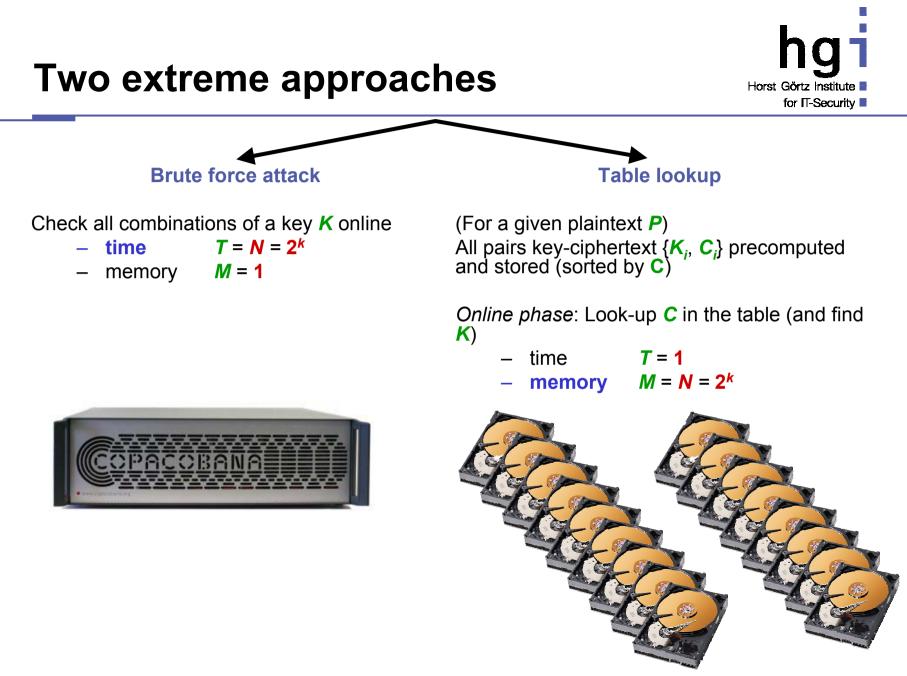
Outline

hg Horst Görtz Institute for IT-Security

Time-Memory Trade-off Tables

- Original Hellman Approach
- Distinguished points
- TMTO with multiple data
- Rainbow tables
- Thin-rainbow tables

Architecture of the A5/1 TMTO engine Implementation results



Time-Memory Trade-Off (Hellman, 1981)

hg Horst Görtz Institute for IT-Security

Compromises the above two extreme approaches

Precomputation phase: For a *given* plaintext *P*:

- precompute (ideally all) pairs key-ciphertext {K_i, C_i};
- store only some of them in the table.

Online phase:

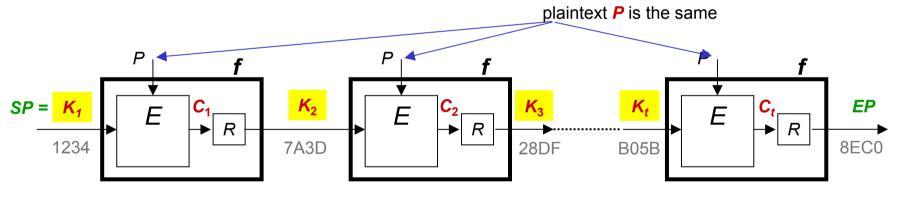
- Perform some computations;
- lookup the table and find the key K.
 - time $T = N^{2/3}$
 - memory $M = N^{2/3}$

Precomputation (offline) phase

Idea: Encryption function E is a pseudo-random function $C = E_{\kappa}(P)$

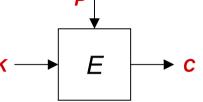
Pairs $\{K_i, C_i\}$ organized in chains

- C_i is used to create a key K_{i+1} for the next step
- **E** is pseudo-random \Rightarrow we perform a *pseudo-random walk* in the keyspace

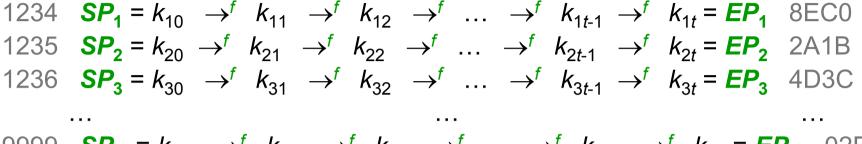


- R reduction function (DES: C has 64 bits, K has 56 bits)
- f step function

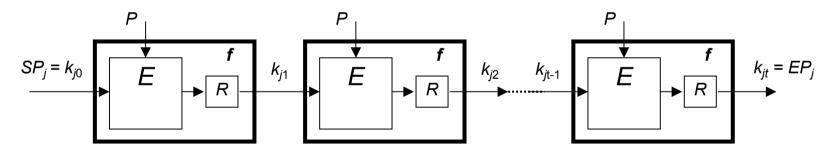
 $f(x) = R(E_x(P))$



Precomputation (offline) phase



9999 $\mathbf{SP}_{m} = k_{m0} \rightarrow^{f} k_{m1} \rightarrow^{f} k_{m2} \rightarrow^{f} \dots \rightarrow^{f} k_{mt-1} \rightarrow^{f} k_{mt} = \mathbf{EP}_{m}$ 02E3



m chains with a fixed length *t* generated

Horst Görtz Institute

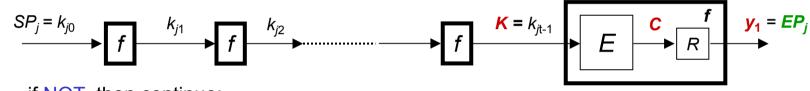
Only pairs $\{SP_i, EP_i\}$ stored (sorted by EP) \Rightarrow reducing memory requirements

Online phase

Given C.

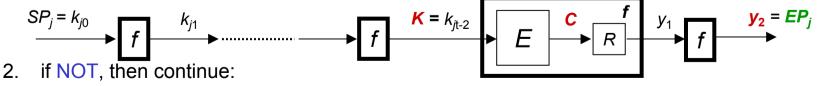
 $C \rightarrow R \rightarrow Y_1$ 1. Compute $y_1 = R(C)$; (*t*-1)× Lookup table if $y_1 = EP_i$

1. if YES, then (potentially) $\mathbf{K} = \mathbf{k}_{it-1} \Rightarrow$ compute $\mathbf{k}_{it-1} = f(f(f(\dots f(\mathbf{SP}_i) \dots)))$, stop



if **NOT**, then continue: 2.

Compute $y_2 = f(y_1) = f(R(C));$ 2. (*t*-2)× Lookup table if $y_2 = EP_i$ 1. If YES then (potentially) $\mathbf{K} = \mathbf{k}_{it-2} \Rightarrow$ compute $\mathbf{k}_{it-2} = f(\overline{f(f(\ldots f(SP_i) \ldots))})$, stop



3. Compute $y_3 = f(y_2) = f(f(y_1)) = f(f(R(C)));$ Lookup table if $y_3 = EP_i$

m chains of fixed length *t* generated *R* is not bijective \Rightarrow some k_{ij} collide. Collisions yield in chain merges or in cycles in chains

Matrix stopping rule: Hellman proved that it is not worth to increase *m* or *t* beyond the point at which

 $m \cdot t^2 = N$

(the coverage of keyspace does not increase too much) He recommends to use *r* tables, each with different reduction function *R*

Since also $N = m \times t \times r$, then r = tHellman recommends $m = t = r = N^{1/3}$

Hellman TMTO – Complexity

Precomputation phase

- Precomputation time
- Memory

 $PT = m \times t \times r = N$ $M = m \times r = N^{2/3}$

- Online phase
 - Memory
 - Online time
 - Table accesses

 $M = N^{2/3}$ $T = t \times r = t^2 = N^{2/3}$ $TA = T = N^{2/3}$

Tradeoff curve

$$M^2T = m^2 t^2 t^2 = m^2 t^4 = N^2$$

 $M^2T = N^2$

Distinguished points (Rivest, ????)

Slight modification of original Hellman method

Goal: to reduce the number of table accesses *TA* (in Hellman *TA* = $N^{2/3}$) *Distinguished point* is a point of a certain property (e.g. 20 most significant

bits are equal to **0**).

Distinguished points

Precomputation phase

- chains are generated until the *distinguished point* (DP) is reached
 - if the chain exceeds maximum length t_{max} , then it is discarded and the next chain is generated
 - the chain is also discarded if the DP has been reached, but the chain is too short t_{min} (to have better coverage)
- triples $\{SP_j, EP_j, I_j\}$ stored, sorted by $EP(I_j \text{ is a length of the chain})$

Online phase

- compute $y_{i+1} = f(y_i)$ iteratively until the DP is reached (or the maximum length t_{max} is exceeded)
- lookup the table (only) if the distinguished point is reached

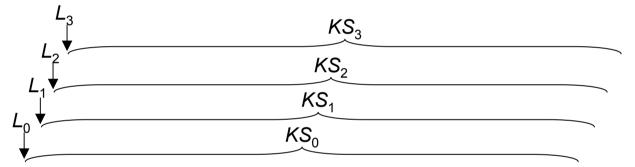
Advantages

- Table accesses **TA** = $r = N^{1/3}$ (c.f. **TA** = $t \times r = N^{2/3}$ in original Hellman)
- Chain loops are not possible

TMTO with multiple data (Biryukov & Shamir, 2000)

hg Horst Görtz Institute for IT-Security

Important for stream ciphers: To reveal an internal state *L_i* having *k* bits we need only *k* bits of a keystream *KS_i*



Having **D** data samples of the ciphertext **C** (or the keystream **KS**) we have **D** times more chances to find the key **K** (or the internal state **L**)

 \Rightarrow We calculate r/D tables only

 \Rightarrow we save the precomputation time *PT* and the memory *M*

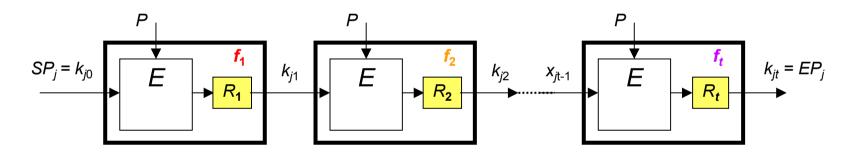
× online time **T** and the number of table access **TA** remain unchanged

Rainbow tables (Oechslin, 2003)

hg Horst Görtz Institute

Idea: to use different reduction function R_i in each step of chain generation, hence the step functions are:

 $f_1 \quad f_2 \quad f_3 \quad \dots \quad f_{t-1} \quad f_t$



Online phase:

- Compute $y_1 = R_t(C)$, compare with *EP*s, if no match, then
- Compute $y_2 = f_t(R_{t-1}(C))$, compare with *EP*s, if no match, then
- Compute $y_3 = f_t(f_{t-1}(R_{t-2}(C)))$, compare with *EP*s, if no match, then

- ...

Just one table (or only several tables) generated,

- $m = N^{2/3}$ (*t* reduction functions used \Rightarrow the table can be *t* times longer),
- $t = N^{1/3}$
- Advantages
 - chain loops impossible
 - point collisions lead to chain merges only if the equal points appear in the same position of the chain
 - online time T about $\frac{1}{2}$ of the online time of original Hellman (for single data)
 - number of table accesses the same like for the Hellman+DP method (for single data)

Disadvantages

Inferior to the Hellman+DP method in the case of multiple data (*D* > 1) (online time *T* and the number of table accesses *TA* are *D*-times greater)

The way to cope with the rainbow tables when having multiple data The sequence of **S** different reduction functions is applied *k*-times periodically in order to create a chain:

$f_1 f_2 f_3 \dots f_{S-1} f_S f_1 f_2 f_3 \dots f_{S-1} f_S \dots f_1 f_2 f_3 \dots f_{S-1} f_S$

Chain length

$$t = S \times k \qquad \Rightarrow \qquad S = t/k$$

Thin-rainbow + DP (to reduce # table accesses **TA**):

DP criterion is checked after each fs

 $f_1 f_2 f_3 \dots f_{S-1} f_S f_1 f_2 f_3 \dots f_{S-1} f_S \dots f_1 f_2 f_3 \dots f_{S-1} f_S$

- We store only chains for which
$$k_{min} < k < k_{max}$$

Candidates for implementation (in case of multiple data, *D*>1)

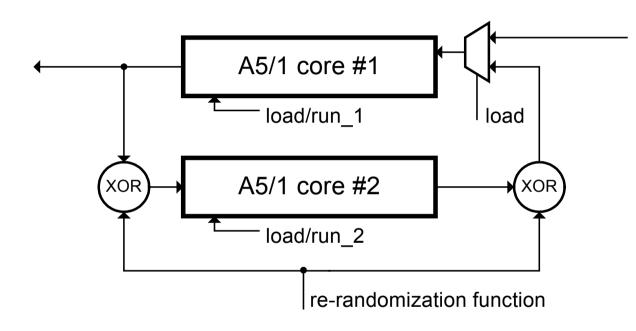
- 1. Hellman + DP
- 2. Thin-rainbow + DP

Both have the same precomputation complexity Both have comparable online time *T* and *#* table accesses *TA*

Hellman+DP checks DP-criterion after each step-function fThin-rainbow+DP checks DP-criterion after f_s only

- \Rightarrow We implemented Thin-rainbow+DP
 - simpler HW, better time/area product
 - $S \cong 2^{14}; \quad k \cong D \cong 2^6$

A5/1 TMTO basic element

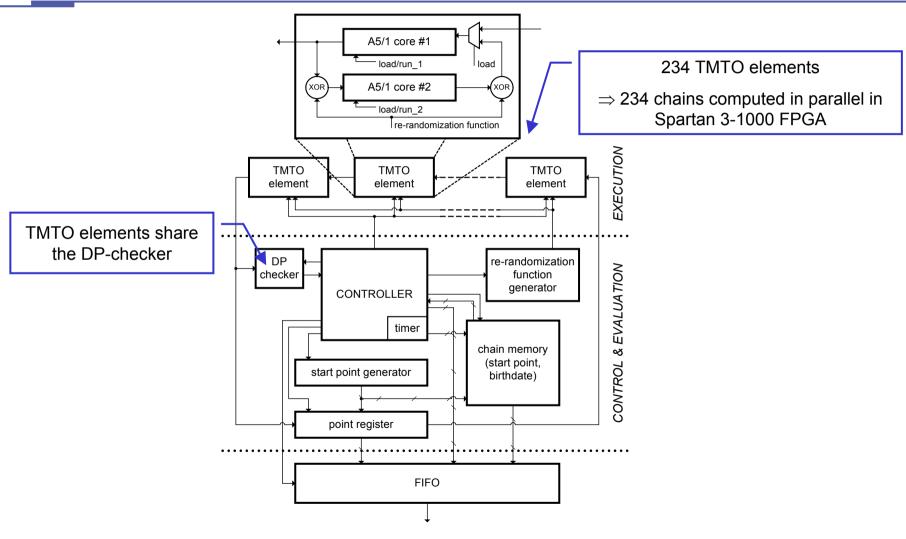


Calculates one chain

Two-stroke mode:

- 1. core #1 generates keystream, core #2 is loaded
- 2. core #2 generates keystream, core #1 is loaded

A5/1 TMTO engine



COPACOBANA is able to perform up to 2^{36} step-functions f_i per second

- 234 TMTO elements/FPGA
- 120 FPGAs
- maximum frequency f_{max} = 156 MHz
- one step-function takes 64 clock cycles

 $234 \times 120 \times 156 \cdot 10^6 / 64 \cong 2^{36}$

Parameter choices for D=64

chains computed <i>m</i>	rainbow sequence S	DP criterion <i>d</i> [bits]	#seq. in chain <i>k</i>	precomp. time <i>PT</i> [days]	disk usage <i>DU</i> [TB]	online time <i>OT</i> [s]	table accesses <i>TA</i>	success ratio <i>SR</i>
2 ⁴¹	2 ¹⁵	5	[2 ³ , 2 ⁶]	337.5	7.49	27.8	2 ²¹	0.86
2 ³⁹	2 ¹⁵	5	[2 ³ , 2 ⁷]	95.4	3.25	36.3	2 ²¹	0.67
2 ⁴⁰	2 ¹⁴	5	[2 ⁴ , 2 ⁷]	95.4	4.85	10.9	2 ²⁰	0.63
240	2 ¹⁴	5	[2 ³ , 2 ⁶]	84.4	7.04	7.0	2 ²⁰	0.60
2 ³⁹	2 ¹⁵	5	[2 ³ , 2 ⁶]	84.4	3.48	27.8	2 ²¹	0.60
240	2 ¹⁴	5	[2 ⁴ , 2 ⁶]	84.4	5.06	8.5	2 ²⁰	0.55
2 ³⁷	2 ¹⁵	6	[2 ⁴ , 2 ⁸]	47.7	0.79	73.5	2 ²¹	0.42