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General requirements on RNGs (I)

Is Requirement R1 sufficient for sensitive applications?

Applications: IVs for block ciphers, challenges, …
Task: The random numbers should prevent (at 

least) replay attacks and correlation attacks.

Requirement R1:
The random numbers should not show any 
statistical weaknesses.

Note: R1 is usually verified with statistical tests.
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Sensitive applications

Examples: session keys, signature parameters, 
ephemeral keys, …

These random numbers must be kept secret!
A potential attacker may know preceding or 

successive random numbers (by challenges, 
openly transmitted IVs, session keys of messages 
which he / she has received legitimately, …)
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General requirements on RNGs (II)

Requirement R2: The knowledge of subsequences of 
random numbers shall not allow to practically
compute predecessors or successors or to guess 
them with non-negligibly larger probability than 
without knowledge of these subsequences.

Requirement R2 is indispensable for sensitive 
applications 

Note: For deterministic RNGs additional requirements 
exist, which are relevant for particular applications.
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Ideal RNGs

Even with maximum knowhow, most powerful 
technical equipment and unlimited computational 
power an attacker has no better strategy than 
“blind” guessing (brute force attack).
Guessing n random bits costs 2n-1 trials in average.
The guess work remains invariant in the course of 
the time.
An ideal RNG is a mathematical construct.
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Classification of ‘real-world’ RNGs

RNG

deterministic non-deterministic (true)

pure hybrid

pure hybridpure hybrid

physical non-physical
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Physical RNG (PTRNG)
(schematic design)

noise
source

analog

digitised analog signal
(das random numbers)

digital

internal r.n.

algorithmic
postprocessing

(optional; with or 
without memory)

external r.n. 

external interface

buffer

(optional)
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Noise source

The noise source is dedicated hardware. 
The noise source exploits, for example,

noisy diodes 
free-running oscillators 
radioactive decay 
quantum photon effects
...
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Guess work and entropy (I)

Let X be a random variable that assumes values in a finite 
set S = {s1, ... ,st}. 
The optimal guessing strategy begins with those values that 
are assumed with the largest probability.
Task of any security evaluation of an PTRNG: Estimation of 
the guess work
Note:

Deterministic RNGs:  The strength may decrease in the 
course of the time when attacks on the applied 
cryptographic primitives become feasible. 
PTRNGs: The workload to find random numbers 
remains invariant in the course of time.
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Entropy (Shannon entropy)

Definition: Let X denote a random variable that 
assumes values in a finite set  S = {s1, ... ,st}. The 
(Shannon) entropy of  X is given by

Remark: 0 ≤ H(X) ≤ log2| S |

H(X) =    ∑ Prob(X= sj)* log2 (Prob(X=sj))
j=1

t
_
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Rényi entropy

For 0 ≤ α ≤ ∞ the term

Hα(X) =        log2 ∑ Prob(X= sj)α
j=1

t__
1- α

1

denotes the Rényi entropy of X to parameter α.

For fixed X the Rényi entropy is monotonously 
decreasing in α.
The most important parameters are α = 1 (Shannon 
entropy) and α = ∞ (or more precisely, α → ∞; min-
entropy).
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Guess work and entropy (II)

The min entropy is the most conservative entropy 
measure. For any distribution of X a lower bound 
for the guesswork can be expressed in terms of its 
min entropy while the Shannon entropy may 
suggest larger guess work.
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Guess work and entropy (III)

If X1,X2,... denotes a sequence of binary-valued iid
(identically and identically distributed) random 
variables then H(X1,X2,...,Xn)/n ≈
log2 (average number of guesses per bit) 
unless n is too small.
The assumption “iid” may be relaxed, e.g. to 
“stationary with finite memory”.
If the random variables X1,X2,...,Xn are ‘close’ to 
the uniform distribution all parameters α give 
similar Renyi entropy values.
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Guess work and entropy (IV)

(At least) the internal random numbers usually fulfil 
at least the second and the third condition. 
Hence we consider the Shannon entropy in the 
following since it is easier to handle than the min 
entropy (→ conditional entropy).
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Security evaluation of a physical RNG

Main Steps:
Investigate

the RNG design and its implementation 
the mechanisms to detect eventual failures that 
cause non-tolerable weaknesses of the random 
numbers while the PTRNG is in operation
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Evaluation of the generic design

Goal: Estimate the entropy per internal random bit
Note: Entropy is a property of random variables 
and not of values that are assumed by these 
random variables (here: random numbers).
In particular, entropy cannot be measured as 
temperature, voltage etc.
General entropy estimators for random numbers do 
not exist.



Schindler June 3, 2008 Slide 18

Warning     Warning Warning

The test values of Maurer‘s „universal entropy test“
and of Coron‘s refinement are closely related to the 
entropy per random bit if the respective random
variables fulfil several conditions. 
If these conditions are not fulfilled (e.g. for pure 
deterministic RNGs!) the test value need not be 
related to the entropy. 
The adjective “universal” has caused a lot of 
confusion in the past.
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We interpret random numbers as realizations of 
random variables. 
Although entropy is a property of random variables 
we will loosely say 
“(average) entropy per random number” instead of  
“(average) gain of entropy per corresponding 
random variable”. 
A reliable security evaluation of a PTRNG should 
be grounded on a stochastic model.
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Stochastic model (I)

Goal: Estimate the increase of entropy per internal 
random number
Ideally, a stochastic model specifies a family of 
probability distributions that contains the true 
distribution of the internal random numbers.
At least, the stochastic model should specify a 
family of distributions that contain the distribution 

of the das random numbers or
of ‚auxiliary‘ random variables 

if this allows to estimate the increase of entropy per 
internal random number. 
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Example 1: Coin tossing (I)

PTRNG: A single coin is tossed repeatedly. 
"Head" (H) is interpreted as 1, "tail" (T) as 0.
Stochastic model:

The observed sequence of random numbers (here: 
heads and tails) are interpreted as values that are 
assumed by random variables X1,X2,… .
The random variables X1,X2, … are assumed to be  
independent and identically distributed.
(Justification: Coins have no memory.)
p : = Prob(Xj = H) ∈ [0,1] with unknown parameter p
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Example 1: Coin tossing (II)

Note: A physical model of this experiment considered 
the impact of the mass distribution of the coin on 
the trajectories. 
The specification and verification of a physical 
model is much more difficult than the specification 
and verification of the stochastic model.
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Stochastic model (II)

A stochastic model is not a physical model. In 
particular, it does not provide the exact distribution 
of the das random numbers or the internal 
numbers in dependency of the characteristics of 
the components of the noise source. 
Instead, the stochastic model only specifies a class 
of probability distributions which shall contain the 
true distribution (cf. Example 1).
The class of probability distributions usually 
depends on one or several parameters.
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Stochastic model (III)

The stochastic model should be verified by 
theoretical considerations and experiments.
The parameter(s) of the true distribution is / are 
guessed on basis of measurements.
An appropriate stochastic model allows the design 
of effective online tests that are tailored to the 
specific RNG design.
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Example 1: Coin tossing (III)

Entropy estimation (based on the stochastic model):

Observe a sample x1,x2, …, xN
Set  p := #{j ≤ N | xj = H} / N 
To obtain an estimate  H(X1) for H(X1) 
substitute p into the entropy formula:
H(X1) = - ( p* log2 (p) + (1-p) * log2(1-p))

~
~

~ ~~ ~~
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Stochastic model (IV)

For PTRNGs the justification of the stochastic 
model is usually more difficult and requires more 
sophisticated arguments.
To estimate entropy the parameter(s) are 
estimated first, and therefrom an entropy estimate 
is computed (cf. Example 1). 
If the random numbers are not independent the 
conditional entropy per random bit has to be 
considered.
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Conditional entropy

Let X1,X2,... denote random variables that assume 
values in a finite set  S = {s1, ... ,st}. The conditional 
entropy

quantifies the increase of the overall entropy when 
augmenting Xn+1 to the sequence X1,...,Xn.

H(Xn+1 | X1,...,Xn) = 

Σ H(Xn+1 | X1=x1,...,Xn=xn) * Prob(X1 = x1,…,Xn = xn)
x1,...,xn∈S
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Example 2

internal
random
numbers
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The Schmitt trigger latches a flip-flop by each 0-
1-crossing (up-crossing) of its input voltage

The clock latches the second flip-flop with 
constant cycle length, i.e. at time 0, s, 2s,…
→ internal random numbers: y1,y2, ...

Random number generation (I)

Reference: [1]  W. Killmann, W. Schindler: A 
Particular Design for Physical RNGs with Robust 
Entropy Estimators. To appear in the proceedings 
of CHES 2008.
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Random number generation (II)

das random number rn := 
number of 0-1-crossing in time period ((n-1)s,ns]

internal random number yn = 
yn-1+rn = y0+r1 + ...+rn (mod 2)

Goal: Determine a lower bound for the 
conditional entropy  H(Yn+1 | Y1, ...,Yn) 

First step: Study the stochastic process R1, R2,...
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Stochastic model (I)

We interpret the intervals t1,t2,.... between 
subsequent 0-1-crossings of the comparator input 
voltage as realizations of random variables T1,T2,... 

Shortly after start-up of the RNG the noise source 
should be in equilibrium state. 

→ The stochastic process T1,T2,...  is assumed to 
be stationary (but not necessarily independent).
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Stochastic Model (II)

The corresponding random variables meet the 
following conditions / relations:

a)T1,T2,… are stationary

b) Rn := Zn- Zn-1 for

c) Zn := min {m ∈ N | W0 + T1+ … + Tm >sn}

with Wn := Zn-ns
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RNG prototype: Empirical distribution of Tj
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Remarks

Interestingly, a) to c) fits to several RNG designs. 
This makes it profitable to study this scenario.

Even if the das random numbers of different RNG 
designs can be modeled in this way the distribution 
of the random variables T1,T2,…and thus of R1,R2,.. 
and Y1,Y2,… may be very different.
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„Transfer“ of stationarity

It can be shown that (under mild assumptions) the 
stationarity of the random variables T1,T2,… implies 
the stationarity of the random variables

W0,W1,W2,… ,

R1,R2,… (das random numbers) and

Y1,Y2,… (internal random numbers)
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Auxiliary random variables

Definition

V(u) := inf {d: T1 + T2 +…Td+1>u}

μ = E(Tj)

σ² := generalized variance of T1,T2,...

Φ( . ):= cumulative distribution function of the 
standard normal distribution 
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Auxiliary random variables (II)

Lemma: For u = v · μ the Central Limit Theorem 
yields the approximations
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Main results (I)

Theorem 1: (i) Let GW denote the stationary 
distribution of the random variables W0,W1,W2,… . 
Then

with equality if the sequence T1,T2,… is independent.

In particular, this formula can be used to compute the 
autocovariance function of R1,R2,…
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Theorem 1 (ctd’; special case) If  the random 
variables T1,T2, ... are independent then

Main results (II)

If, additionally, Tj has a continuous cumulative 
distribution function F(.) then GW has density 
gW(w) :=(1-F(w)) / μ .

(see [1] for further related results)
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RNG prototype: Experimental results

Entropy per internal random bit > 1-10-4.

Output rate of 5*105 random bits / sec is principally 
possible.
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PTRNGs in operation: Potential risks

Worst case: total breakdown of the noise source

Ageing effects, tolerances of components of the 
noise source and external influences might cause the 
generation of random numbers with unacceptably low 
quality.

Such events must be detected with certainty so that 
appropriate responses can be initiated.
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Security measures

goal

shall detect a total breakdown of the 
noise source very soon

tot-test

shall ensure the functionality of the 
PTRNG when it is started

startup test

shall detect non-tolerable weaknesses
of the random numbers sufficiently soon

online test
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Example 3: LFSR

... ...
das-r.n. internal r.n.

worst case scenario: total breakdown of the noise 
source, inducing constant das-random numbers

entropy / das bit = 0, ... but ...

internal r.n.s: good statistical properties!!!

algorithmic postprocessing
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Example 3 (II)

Statistical blackbox tests that are applied to the 
internal random numbers will not even detect a total 
breakdown of the noise source (unless the linear 
complexity profile is tested). 

Instead, the online test should be applied to the 
das random numbers (typical situation).
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Online tests: General remarks

The online test should be tailored to the particular 
RNG ( → stochastic model). 

For Example 1 (coin tossing) a monobit test were 
appropriate.

Since the online test(s) is (are) usually realized by 
statistical test(s), also „false” noise alarms may occur. 

A failure of the online test causes a noise alarm
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Security evaluation

A reliable security evaluation shall verify the 
suitability of the online test, the tot test and the 
startup test.

The evaluation also comprises the specified 
consequences of a noise alarm (e.g.: RNG is shut 
down, audit of the noise alarms, restart of the RNG 
by a human operator, …).
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Common Criteria (CC)

provide evaluation criteria for IT products which 
shall permit the comparability between 
independent security evaluations. 

A product or system that has successfully been 
evaluated is awarded with an internationally        
recognized IT security certificate.
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AIS 31 (I)

The Common Criteria and the corresponding 
evaluation manuals do not specify evaluation criteria 
for random number generators. 
In the German evaluation and certification scheme the 
evaluation guidance document

AIS 31: Functionality Classes and Evaluation 
Methodology for Physical Random Number 
Generators

has been effective since September 2001
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AIS 31 (II)

The AIS 31 is technically neutral. The applicant 
for a certificate has to give evidence that the PTRNG 
meets specified requirements.

The AIS 31 has been well-tried in many product 
evaluations. 

A reference implementation of the applied 
statistical tests can be found 

www.bsi.bund.de/zertifiz/zert/interpr/ais_cc.htm
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Alternative security paradigm

Crucial points of an AIS 31 evaluation are the 
understanding of the design and the effectiveness of 
the online test. 

Alternative approach (e.g., ANSI X9.82, Part 2 (draft)): 

main security anchor: complex algorithmic 
postprocessing algorithm with memory that meets 
requirements R1,R2 and R3 (one-way property of the 
state transition function); 
lower requirements on the understanding of the design 
and the online tests.
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Alternative security paradigm: 
Advantages and disadvantages

(+) lower requirements on the understanding of 
the RNG design 

(+) lower requirements on the effectiveness of the 
online tests

(-) requires a time-consuming postprocessing
algorithm

(-) possibly (without being noticed!) only practical 
security

(-) requires the protection of the internal state
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ISO / IEC 18031 „Random Bit Generation“

covers all classes of RNGs
PTRNGs: Allows design principles that either 
follow the AIS 31 or the ANSI X9.82-2 (draft) 
approach
considers also the correctness of the 
implementation  
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Final remark

Combining 
a strong noise source 
with effective online tests 
and a strong algorithmic postprocessing algorithm 

provides two security anchors which shall ensure 
theoretical security and computational security, 
respectively.
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