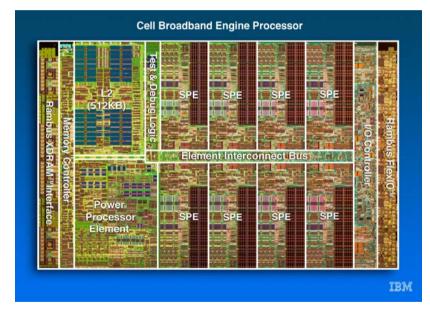


MNOC: A Network-on-Chip for Monitors

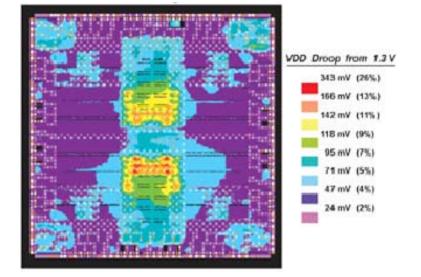
S. Madduri, R. Vadlamani, W. Burleson, and R. Tessier Department of Electrical and Computer Engineering University of Massachusetts, Amherst


Outline

- Need for integrated monitors and system response
- Our Approach
 - Collections of integrated monitors
- Challenges for integrated monitors
 - Processing and use of monitor data
 - Monitor interconnection
- Preliminary results
 - Thermal data and critical code section correlation
- Current work

Proliferation of Embedded SoC

- Increased use of large multi-core systems
- Recent growth in use of real-time monitoring on-chip
- The interaction between cores has become a large concern
- Growth of multicores pertains to both FPGA and Reconfigurable SoC
- How can we make sure these systems operate correctly?



Courtesy: IBM

IBM Cell 9 core

Need for Integrated On-chip Monitoring

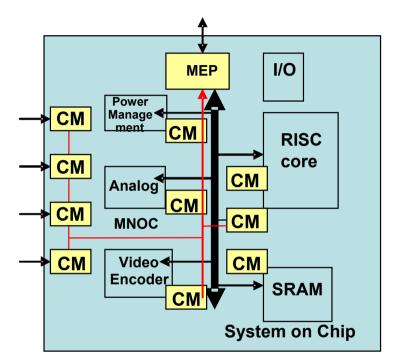
- Architectural monitors are important components of many SoCs.
- Specific uses of monitors in terms of soft-error failures, wear-out detection and security issues.
- Monitor interconnection may need to be some of the lowest-latency, cross-chip connections in a system-on-chip (SoC).
- Support for monitors and associated interconnect must be lightweight and consume minimal system resources.
- Collected data must be processed collaboratively.
- Goal: Develop integrated environment to collect, transport, and process monitor data for SoCs

Chip voltage droop profile for 223 million transistor ASIC

Courtesy: http://www..mayo.edu

Survey of existing on-chip monitors

Sensor	Typical Bandwidth	Typical Power Dissipation	Typical Area/ Process width
Thermal monitors	20Kbps	2µW - 220µW	0.01 mm ² /0.18 – 0.5 mm ² /1 μ m
Wear-out detectors	1Mbps	1mW	0.15% of chip area
Soft-error monitors	Very low and variable- based on Soft Error Rate- once in 5hrs – once in 28 yrs	7% of chip power	5- 7% of chip area
Processor performance monitors using performance counters (branch prediction, cache monitors, etc)	PC profiling rate – 4Kbps Cache monitor sampling-10Mbps Branch prediction : 0.1Mbps	Low	2-6 counters on chip, 2-4% of program execution time overhead
Intrusion detection (Processing monitor)	Low	Very Low	Overhead of around 10% in terms of memory
Jitter monitor	5 Mbps	Low	0.05 mm ² (0.25 μ technology)



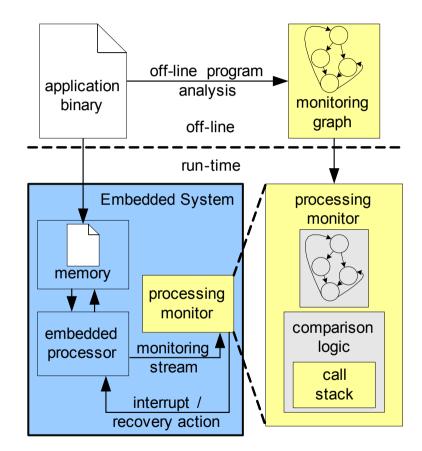
Current Limitations of Monitor Usage

- Difficult to configure monitors
- Difficult to interconnect monitors and collect data
- Monitor data interacts with main computing system in an ad hoc fashion
 - Non-standard interfaces
- Difficult to ensure monitor data is secure
 - An issue for both FPGAs and ASIC SoCs
 - Includes external interfaces
- Diversity of monitors makes standardization difficult
 - Likely to become a bigger issue in the near future

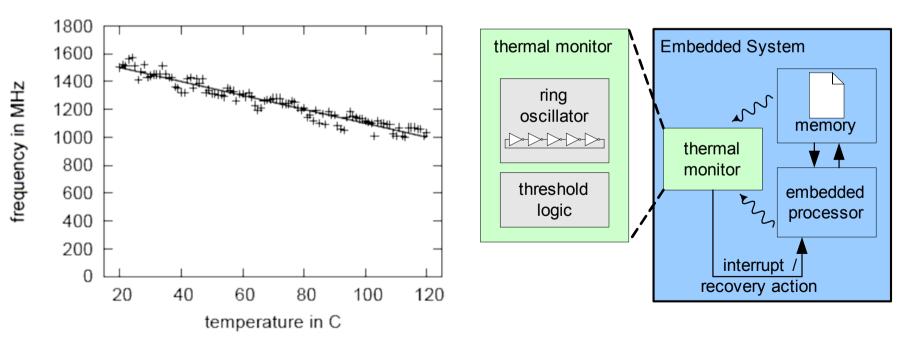
Secure System Level

CM = Configurable Monitor

MNOC = Monitor Network on Chip


MEP – Monitor Executive Processor

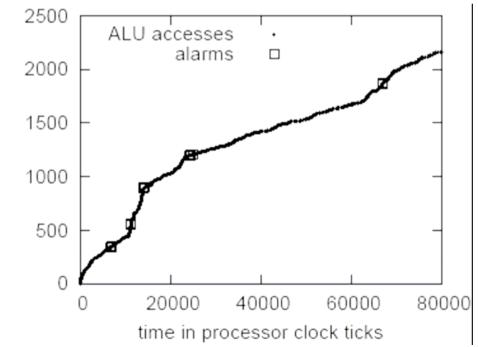
- Configurable computing is seen as a system
 - Monitoring of the activity of the system to detect irregular sequence of computation
 - Dynamic reconfiguration of the critical parts of the system


Processing Monitor

- Offline binary analysis
 - Monitoring graph extraction
- Online validation of processing
 - Information stream from processor
 - Comparison to monitoring graph
 - Requires call stack for returns
 - Interrupt/recovery on deviation
- Choices on what to monitor
 - Address
 - Vulnerable to code replacement
 - Opcode
 - Vulnerable to changes in registers
 - Control flow
 - Vulnerable to code replacement within basic block

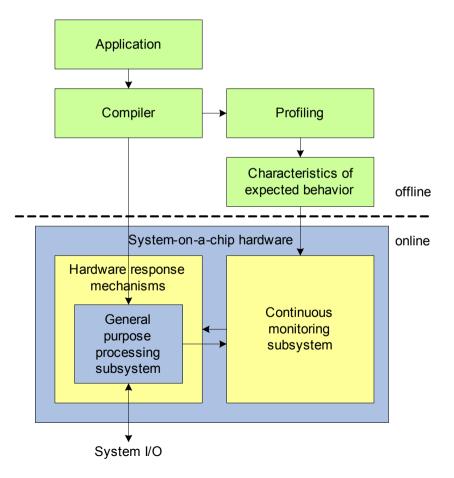
Thermal Monitor

- Ring oscillator
 - Odd number of inverters in loop
 - Delay across inverter is temperature dependent
 - Larger number of inverters mitigates power supply noise



Thermal Monitor

- Hardware access counters
 - Tracks hardware utilization over time
 - High utilization in short interval can cause thermal problem


cummulative ALU accesses

- Implementation overhead
 - Ring oscillator
 - Less than 0.5% of processor area
 - Less than 0.5% of processor power
 - Hardware access counter
 - Access counter
 - Sampling possible

Collaborative Monitoring

- Information from different monitors can be correlated
 - Alarms based on joint information

Collaborative Monitoring

recovery action

- Sensitivity tradeoff for individual monitors
 - High sensitivity trigger many false positives
- Monitors can work together to better assess data
- Example: processing / thermal monitor
 - Code regions with high access frequencies can be identified
 - Thermal threshold Embedded System collaborative monitoring time logic ~~~ memory thermal processing monitor monitor embedded monitoring processor stream interrupt interrupt /

recoverv action

Interconnected Monitors Design Issues

- Diversity of monitors likely to increase in coming years
- Monitor interfaces currently ad hoc.
- Performance constraints motivate separating monitor/main processing network
- Monitor interconnection criterion:
 - 1. low latency
 - 2. low overhead
- Need to aggregate, collate, and react to monitor data quickly
- Monitors need to be dynamically configured based on changing system requirements
- Global controller (possibly distributed) needed to coordinate monitor data collection and reactions

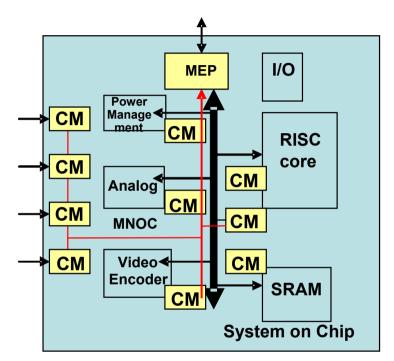
Monitor Interconnect Design Challenges

- Minimize interconnect latency
 - Difficult to pre-allocate monitor bandwidth
 - Difficult to tradeoff latency, area, and power limitations
 - Circuit level techniques needed
- Provide flexible interface for monitors
 - Difficult to generalize since monitors are diverse
- Minimize resources needed for monitor control/data processing
- Maintain effective response to monitor data

Distinction from current approaches

- Unlike NOCs designed for data transfer that typically use L2 caches or more exotic ring caches, MNOC will prioritize *latency* rather than bandwidth
- Develop protocols required for inter-monitor transfer based on dynamic system priorities.
- Study the impact of different sensor interface designs and corresponding responses at various time scales
- Architectural design and VLSI implementation of several CMs, the interconnect, and the controller along with monitors for power, voltage, and processor usage.
- Lightweight & robust monitor interconnect and interfaces

Types of On-chip Interconnect

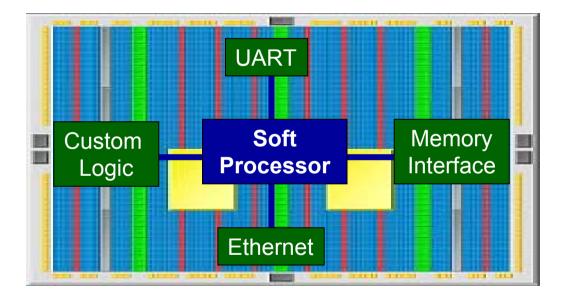

• Current on-chip interconnect approaches range from buses to networks-on chip

UMassAmherst

MNOC will build on existing technologies with optimizations for latency, low overhead

Interconnect type	Characteristics	Possible issues/optimizations	
On-chip bus	 Simple Limited scalability 	1. Probably not appropriate for MNOC	
Statically-scheduled network	 Predictable performance Difficult to prioritize transfer 	1. Could be integrated with virtual channel dynamic network	
Single channel dynamic network	 Low overhead Straightforward interface 	1. Difficult to prioritize latency versus bandwidth	
Virtual channel dynamic network	 Allows for priority tradeoffs More resource overhead 	 Allows for latency/throughput tradeoffs Parameterize based on selected monitors Combine with circuit level optimizations 	

Securing the Monitor Gateway


- CM = Configurable Monitor
- MNOC = Monitor Network on Chip
- MEP Monitor Executive Processor

- External user needs capability to access monitor information
 - Low overhead security needed
 - Dynamic reconfiguration of the critical parts of the security provides flexibility
- Gateway also needs to provide control for monitor reconfiguration
- Complexity of monitors makes this issue a challenge

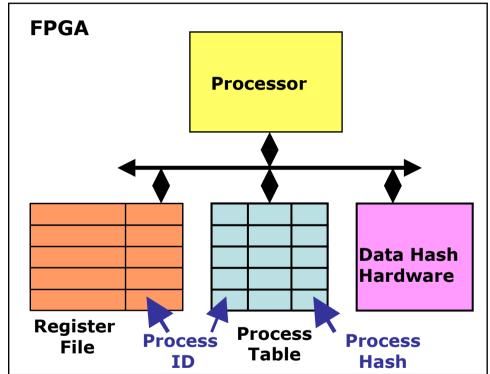
Secure Reconfigurable Processors

• Soft processors provide a special opportunity for monitoring

- How can we ensure monitor usage is secure?
 - Data encrypted for gateway
 - Tampering either evident or not possible

Next Steps

- Architecture development for monitor network on chip currently under way
- Interface to monitors and appropriate analog techniques being evaluated
- Continued assessment of diverse monitors
- Architecture and interface for the monitor executive processor
 - Encryption interface needs to be defined
- High-level modeling and use of monitors to be evaluated



Conclusion

- Need for better use and implementation of collections of on-chip monitors
- Previous interconnect approaches are insufficient. Need for new approaches
- Monitors can work together to better assess processing
- Monitor executive processor needed to coordinate use of monitor data
- Project under way

Secure Context Swap for FPGA Processors

- Hardware for secure context swaps another security enhancement
- Follow previous examples from secure processors (e.g. Aegis, XOM)
- Memory and logic availability in FPGAs simplify implementation

Monitoring Graph Example

• Example

- MiBench on
 SimpleScalar
 simulatior
- Monitoring graph
 - Chained basic blocks
 - Different information within basic blocks

	1			
comple object code	monitoring graph			
sample object code	address	opcode	control flow	
	(((
020004d0 str r0, [sp]	020004d0	str	*	
020004d4 str r0, [sp, #4]	020004d4	str	*	
020004d8 ldr r1, [pc, #1c4]	020004d8	ldr	*	
020004dc sub r4, r11, #2080	020004dc	sub	*	
020004e0 ldr r3, [pc, #1c0]	02000 4e 0	ldr	*	
020004e4 sub r4, r4, #8 ; 0x8	020004 e 4	sub	*	
020004e8 ldr r2, [r11, -#2136]	020004e8	ldr	*	
020004ec mov r0, r4	020004ec	mov	*	
020004f0 bl 02091aa0	020004f0	bl	bl 02091aa0	
020004f4 mov r0, r4	020004f4	mov	*	
020004f8 mov r1, #0 ; 0x0	02000 4 £8	mov	*	
020004fc bl 020905dc	020004£c	bl 🖉	bl 020905dc	