The PACE Library and Hardware Arithmetic Operators

Arnaud Tisserand

LIRMM, CNRS-Univ. Montpellier 2
Arith Group

CryptArchi
Trégastel, June 1-4, 2008

CENTRE NATIONAL u' I I
DE LA RECHERCHE e
SCIENTIFIQUE

de Montpellier

LIRMM

Outline

Introduction

PACE Library

Future Prospects

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 2/19

Arithmetic Operator

[|mp|ementat|ons number systems }

software: \N
func., lib($

integer, redundant,
fixed /floating-point,

hardware: \ multiple precision,
FPGA, ASIC operator Fan, Fq, RNS, LNS. ..
area, delay \
energy

[computations
+, x, +, NETE
modular op., a¥ mod n
sin, cos, exp, log. ..
DSP. .. [constraints j digit recurrence. ..

algorithms]

polynomial approx.,
function iterations,
tables and operations,

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 3/19

Arithmetic(s) Optimization

good adequacy

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 4/19

Practical Problems in Computer Arithmetic

e limited support in design tools

software: integer, floating-point, math. libraries
hardware: integer, fixed-point, a few IP blocs

e validation
verification of the correctness of a program (function, library,
hardware bloc, circuit) at design time

o test
verification of the correctness of an implementation

Our solutions:
e optimized and validated libraries (e.g. PACE)
e automatic generation of low-level descriptions (C and VHDL)

e include new arithmetic types and primitives in design tools
(compilers, CAD tools)

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators

5/19

Other Libraries/Tools

e GMP, arbitrary precision arithmetic on signed integers, rationals and
floating point numbers

e NTL, data structures and algorithms for arbitrary length integers,
and for vectors, matrices, and polynomials over the integers and
over finite fields

e CLN, computations with all kind of numbers, including complex
numbers, and univariate polynomials in arbitrary precision

e Miracl, crypto primitives (RSA, DH, ECC, AES, SHA2, etc)
e mplF,, finite fields
e ZEN, arbitrary finite field arithmetic

e CAQ, "an experimental cryptography-aware domain-specific
language and associated compiler system”

e SAGE, open source mathematics software

e Maple, Magma and Pari/GP for validation

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 6/19

Some Research Activities in the ARITH Group

Computer arithmetic for cryptography applications:
e modular and finite field arithmetic
e implementation of basic crypto arithmetic primitives
e residue number systems (RNS)
e double-base number systems (DBNS)
e arithmetic library

e addition chains for ECC implementations
e secured arithmetic operators design

> power-consumption aspects
» fault injection

e implementations of applications
e hyperelliptic curves
e pairings
www.lirmm.fr/arith/

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 7/19

PACE Overview

Motivations:
e very limited mathematical support in languages and processors
(“small” integers and floating-point approximation of real numbers)
e comparison of several solutions is difficult

» hard to write all the solutions to test
> needs a uniform test system for comparison accuracy

e fast validation of new algorithms/representations

Solution: PACE library for “Prototyping Arithmetic for Crypto Easily”

o C++
e templates

> generic software
» specialization for high performance (traits)

e LGPL license

e current version: ECC, prime fields, standard algorithms

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 8/19

PACE Team

Main developers:
e Pascal Giorgi (associate professor Univ. Montpellier, LIRMM)
o Laurent Imbert (CNRS researcher, LIRMM)
e Arnaud Tisserand (CNRS researcher, LIRMM)

Contributors:
e Thomas lzard (master student Univ. Montpellier)

o Agostinho Peirera (research engineer Univ. Montpellier, 2007)

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 9/19

Application
layer

Monitoring
layer

Arithmetic
layer

PACE Architecture

integer k;
J—

point P, Q;
time tO, t;

£0 = time();

Q=k*P; —

t = time() - t0;

representations

X X

y Y

z

algorithms

/

-

S5 o) /%/tiv.\y]
/

A. Tisserand, Arith—-LIRMM. PACE and Hardware Arithmetic Operators

10/19

Arithmetic Layer

integer <100> p = 29;
typedef gfp <100, p> fp_29;
fp.29 x = 17, y = 20, z;

z =x+vy,; assert(z = 8);
cout << x << " 4+ " <<y <" =" < z << endl;
Z =X —Y; assert(z = 26);
cout << x <" — " K y<<" =" < z < endl;
Z =X % y; assert(z = 21);
cout << x << " x " Ky <" =" << z << endl;
z = inv(x); assert(z = 12);
cout << x << " “(—1) =" << z << endl;
produces
17 + 20 = 8
17 — 20 = 26
17 % 20 = 21

17 ~(-1) = 12

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 11/19

Arithmetic Layer

Current version:
e long integers

> representations: GMP, basic, with guard bits (under dev.)
> operations:
+, x, 2,+,\/, ~1 mod, invmod, powmod, cmp, bit, popcount...

e prime fields elements, Fp with general P

» representations: GMP, basic, Montgomery (under dev.), with guard
bits (under dev.)

» operations: +, x, 2

, L =, bit, popcount...

Future versions:
e [Fp with specific P values
e [F» and extensions
e polynomials

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 12/19

Support for Multiple Representations and Algorithms
Goal:

e support multiple representations and algorithms

e very small modifications in the code

e compare several solutions
Method:

e generic programming: traits from C++

e abstract version vs. specialized versions

e default version (configuration)
Example:

integer <600> a, b, «c;
integer <600, RP_integer GMP> a2, b2, c2;

c =a + b;
c2 = a2 + b2;
assert(c = c2);

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators

13/19

Monitoring Layer

e number of operations (at each level)
e time:

> system time
» performance counters of the processor (PAPI and Perfctr)

e memory (#words, max. size)

e number of objects (max or current count)

e other values:

» cache misses
» Hamming weight (activity)

Very simple use of the monitors:

monitor(s) declaration
program bloc
read monitor(s) state(s) or trace(s)

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 14/19

Application Layer (ECC)

integer <100> p = 29; typedef gfp <100, p> fp_29;
curve<fp_29> E(4, 20);
typedef point_aff<fp_29, E> point;

E.info();
point P1(5,22); point P2(16,27);
cout << "P1 =" << P1 << " P2 =" << P2 << endl;
point P3 = P1 + P2;
cout << "P1 + P2 =" << P3 << endl;
point P4 =2 x P1;
cout << "[2] Pl =" << P4 << endl;
produces

Elliptic curve defined by y"2 = x"3 4+ 4xx + 20
PlL = (5, 22) P2 = (16 , 27)

P1 + P2 = (13 , 6)

[2] P1 = (14 , 6)

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 15/19

Validation

integer <100> p = 2003;
typedef gfp <100, p> fp_-2003;
curve<fp_-2003> E(1132,278);

typedef point_jac<fp_2003, E> pomfp’2003 i= FiniteField (2003);

E.info (); E := EllipticCurve([fp-2003 | 11
T y) print E;
podui PUHZLy, ate, wol) Pl := elt< E | 1120, 1391 >;
point P2(1623, 504, 1559);
: " P2 := elt< E | 894, 1425 >;
cout << "P1l = << Pl << endl; rint "Pl =" Pl
cout << "P2 =" << P2 << endl; print " po] P2t
point P3 = P1 + P2; 33 — p1 +_P2" '
assert (P3 = point(1683,1388)); I "P1 4 P'2 — v p3-
cout << "P1 4+ P2 = " << P3 << en dlpr”f_2 . Pl
point P4 = 2 % P1; n; " [2] F’i — " P4
assert (P4 — point(1467,143)); pri o '
" " P5 := 763 x P1;
cout << "[2] P1 =" << P4 << endl; " " .
point P5 = 763 =x Pl RE L o) R eoh
assert (P5 =— point(1455,882)); ,
cout << "[763] Pl =" << P5 << endElliptic curve defined by y"2 = x
Pl = (1120 : 1391 : 1)
. . o P2 = (894 : 1425 : 1)
f;flpziglgufvjogef'%%i)by Y'2=>"p1 | po = (1683 : 1388 : 1)
P2 — (1623 : 504 : 1550) [2] P1 = (1467 : 143 : 1)

Pl + P2 = (763 : 440 : 1934) k) S S ST SRR

[2] P1 = (1800 : 1083 : 1684)
A. T|sLeran§]AI’IE LIR‘MI\£7I§A%E and;& dware’ An%vmet)c Operators 16/19

PACE and Hardware Arithmetic Operators

e Arithmetic blocs modeling/prototyping
» math. level
bit level
advanced number systems and algorithms support
fast and simple modifications
monitoring (accurate op. count, activity estimation, resource
requirements...)

vV vy vVvYyYy

e Validation support
» design time verifications (size, math. properties, behavior...)
> test vectors generation
e Links to?
» arithmetic operator generators
» timing support (scheduling)
» architecture exploration

!Features under development inside and outside PACE
A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 17/19

Future Prospects

Software:

advanced algorithms

Fp with specific P values

5> and extensions

polynomials

SCA protected algorithms for ECC
RSA like crypto

support/link to other tools/libraries

Hardware:

operator generator
SCA protected algorithms for ECC

co-simulation

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators

18/19

The end, some questions ?

Contact:

e mailto:arnaud.tisserand@lirmm.fr
e http://www.lirmm.fr/~tisseran
e Arith group

e LIRMM Laboratory, CNRS-Univ. Montpellier 2
161 rue Ada. F-34392 Montpellier cedex 5. France

Thank you

A. Tisserand, Arith—LIRMM. PACE and Hardware Arithmetic Operators 19/19

mailto:arnaud.tisserand@lirmm.fr
http://www.lirmm.fr/~tisseran

	Introduction
	PACE Library
	Future Prospects

