
Bistream management in FPGA based
secure applications

Benoît Badrignans, LIRMM / NETHEOS
Lionel Torres, LIRMM

CryptArchi 2009 - Prague, Czech Republic - June 24-27th 2009

Netheos

R&D Department
(customer demand)

Product development
(eKeynox : Token management system)

NETHEOS

9 employees (Electronics, software and mathematics)

5 years old

Netheos : eKeynox

Software running
on token

Server

+

Netheos : eKeynox

Software running
on token

Server

+

Strong authentication

Private memory

Mobile desktop Remote management

Netheos : R&D department

Skills :
- FPGA based secure products
- Secure micro-controllers
- Cryptography
- PCI Express
- USB

Research program : ANR ICTER
(Confidentiality and integrity of reconfigurable technologiues)

Outline

Context

State of the art

Proposed solutions

Conclusion / Perspectives

Context | state of the art | Propositions | Conclusion

FPGA for secure applications :

Why ?

- Suitable for small and medium markets

- Bitstream remote update (Bugs, vulnerabilities)

- Good performances

Which applications ?

- Personal security devices

- Set-top boxes

- Automotive

Context | state of the art | Propositions | Conclusion

FPGA for secure application :

Why ?

- Suitable for small and medium markets

- Bitstream remote update (Bugs, vulnerabilities)

- Good performances

Which applications ?

- Personal security devices

- Set-top boxes

- Automotive

Context | state of the art | Propositions | Conclusion

Context | state of the art | Propositions | Conclusion

FOCUS

Context | state of the art | Propositions | Conclusion

Context | state of the art | Propositions | Conclusion

Bitstream importance

- Define hardware behaviour

- Boundary between FPGA vendors and system designer responsibilities

- FPGA vendors have to provide basic security mechanisms (encryption, integrity)

Bitstream security issues

- Copying or cloning

- Reverse engineering

- Tampering (modify hardware behaviour)

- Secure key management

Context

State of the art

Proposed solutions

Application and evaluation

Conclusion / Perspectives

Context | state of the art | Propositions | Conclusion

Context | state of the art | Propositions | Conclusion

Bitstream encryption

- Mainly used against copying and reverse engineering

- Makes tampering difficult

- Allows designers to hide secrets

Context | state of the art | Propositions | Conclusion

Bitstream integrity

- Make tampering “impossible”

- Only ACTEL claims to provide strong integrity mechanism

Context | state of the art | Propositions | Conclusion

Bitstream integrity

ACTEL ProASIC 3 documentation

Context | state of the art | Propositions | Conclusion

Bitstream integrity : attacking CRC

- SRAM FPGAs use 32 bits CRC

- Attacker can perform attacks with only 232 tries

Context | state of the art | Propositions | Conclusion

Bitstream integrity : attacking CRC

- SRAM FPGAs use 32 bits CRC

- Attacker can perform attacks with only 232 tries

- Attacker cannot finely control its attack for the first block

Context | state of the art | Propositions | Conclusion

Bitstream integrity : attacking CRC

Example :

- Attacker targets a RNG block

- He changes one 128 bits block in
the encrypted bitstream

- The system will probably be
functional but the RNG don't

Context | state of the art | Propositions | Conclusion

Secure remote update

- Remote update is encouraged by FPGA vendors :

* Altera IP core : Remote Update Circuitry (ALTREMOTE_UPDATE)

* Xilinx white paper : Internet Reconfigurable Logic

Altera remote update schematic

Context | state of the art | Propositions | Conclusion

However they do not provide simple solution against replay

Secure remote update

Context | state of the art | Propositions | Conclusion

Secure remote update

Replay attack

Context | state of the art | Propositions | Conclusion

Secure remote update

Replay attack

Context | state of the art | Propositions | Conclusion

Key management (SRAM FPGAs)

- No special feature for user key management

- System designer can hide keys inside bitstream

Hidden key inside bitstream

- But : No simple solution for system owner to personalize its own keys

- But : A bitstream per key is needed

Context | state of the art | Propositions | Conclusion

Key management (User Flash)

- Key generation can be performed by the system owner

- The same bitstream can be used for each systems

- Non volatile storage allows PIN code implementation

- But no solution to erase keys when FPGA is not powered

Context | state of the art | Propositions | Conclusion

Secure bitstream management
summary

 - Bitstream encryption is well supported √

 - Bitstream integrity is generally weak √

 - Bitstream update management is subject to replay X

 - Key management is generally not easy √

Context

State of the art

Proposed solutions
Application and evaluation

Conclusion / Perspectives

Context | state of the art | Propositions | Conclusion

Context | state of the art | Propositions | Conclusion

Key management (SRAM)

Context | state of the art | Propositions | Conclusion

Key management (SRAM)

- An empty slot receives a user generated key

- Provide a solution for on the field key generation

- System designer can provide the same bitstream for each system

Key injection (application on NETHEOS platform)

- The secured µProcessor performs the key injection

- The µProcessor stores the bitstream key KB in its secured memory

- This process can also be performed by the FPGA itself (not yet implemented)

Context | state of the art | Propositions | Conclusion

Context | state of the art | Propositions | Conclusion

Secure remote update (solution 1)

Main idea :
- Each bitstream version embeds a unique tag and a unique key (KID)
- An external trusted party attest the current bitstream version

But :
- System designer need to implement an encryptor
- Regular polling is needed
- The problem is reported to the trusted party

Context | state of the art | Propositions | Conclusion

Secure remote update (solution 1)

Simplified protocol :

Implementation of secure remote update (solution 1)

Trusted party : secured µProcessor
- The µProcessor embeds a TRNG that generates nonces regularly
- An hardware AES decryptor is used to verify FPGA responses

FPGA :
- An hardware AES encryptor is (re)used to generate responses
- The cost is about 800 Slices and 10 RAM blocks
- polling is performed every 10 seconds

Context | state of the art | Propositions | Conclusion

Context | state of the art | Propositions | Conclusion

Secure remote update (solution 2)
Main idea :
- Each design version embeds a unique tag and a nonce
- Internal Flash stores a reference TAG

Advantage :
- System designer do not need to implement any cryptographic function
- An other Nonce can be used for acknowledgment

Context | state of the art | Propositions | Conclusion

Secure remote update (solution 2)

Simplified protocol :

Context | state of the art | Propositions | Conclusion

Secure remote update (solution 3)

Solution proposed at FPL'08

Context | state of the art | Propositions | Conclusion

Secure remote update (solution 3)

Simplified protocol :

Context | state of the art | Propositions | Conclusion

Secure remote update (summary)

Context

State of the art

Proposed solutions

Application and evaluation

Conclusion / Perspectives

Context | state of the art | Propositions | Conclusion

Context | state of the art | Propositions | Conclusion

The perfect FPGA for secured application

- Strong bitstream encryption

- Strong bitstream integrity mechanisms

- Fast bitstream keys deletion (using a battery)

- User flash memory for less sensitive keys and certificates

- Non-volatile reprogram protections (like ACTEL Flash Lock)

- Downgrade protected (using solution 2 or 3)

- Battery powered user memories for PIN code implementation and
sensitive key storage (unreachable from external Ios)

 √
√

SRAM

Flash

Flash

Flash

X

41

Thank you

Benoît Badrignans
Benoit.Badrignans@lirmm.fr
b.badrignans@netheos.net

Lionel Torres
lionel.torres@lirmm.fr

LIRMM / NETHEOS

LIRMM

mailto:Benoit.Badrignans@lirmm.fr
mailto:b.badrignans@netheos.net
mailto:lionel.torres@lirmm.fr

