Bistream management in FPGA based
secure applications

Benoit Badrignans, LIRMM / NETHEOS
Lionel Torres, LIRMM

UNIVERSITE MONTPELLIER 2

9 employees (Electronics, software and mathematics)
5 years old

NETHEOS

R&D Department

(customer demand)

Product development
(eKeynox : Token management system)

GENERALE

gemalto”

security to be free

Software running Server
on token

Software running
on token

uthentication

Private memory

Mobile desktop Remote management

= .ﬂ'; = T TR
7% Open Office Calc
[22]

Skills :

- FPGA based secure products
- Secure micro-controllers

- Cryptography

- PCI Express

- USB

Research program : ANR ICTER

(Confidentiality and integrity of reconfigurable technologiues)

—
TELECOM

PARIS
I:I_II_IEFI Supérieure des

télécommunications

Context
State of the art
Proposed solutions

Conclusion / Perspectives

FPGA for secure applications :
Why ?

- Suitable for small and medium markets

- Bitstream remote update (Bugs, vulnerabilities)

- Good performances

Which applications ?
- Personal security devices
- Set-top boxes

- Automotive

FPGA for secure application :

Why ?

- Suitable for small and medium markets

- Bitstream remote update (Bugs, vulnerabilities)

- Good performances

Which applications ?

- Personal security devices

Pavsimnial Suvucaney Dekebon Swztwmns (POOS)
o Bl oo alin Al gs

- Set-top boxes

- Automotive

Secured system
Configuration Processor
. Memory FPGA memory
(Optional)
Encrypted _| Configuration USER LOGIC
bitstream i 18 Loaic
i E 9 Ecrypto 10s -
___________________________________ ' ngines
¥
Crypto Memories
Engine
i
]
Power supply

Secured system

Configuration Processor
. Memory FPGA memory
. (Optional)
Encrypted : _| Configuration USER LOGIC \
bitstream Logic Crypto 5
Spoofing eviceueee et :] Engines *
el . Local|DEMA Spoofing
Local EMA Crypto Memories *_ Fault injection Replay
Fault injectjon Engine Invasive attacks
f 1
-
Invasive attacks \ Key(s) TRNG WP
'}
Power supply

Global DPA/DEMA

Secured system

FOCUS Configuration FPGA Processor
.~ Memory | memory
. (Optional)
Encrypted : _| Configuration USER LOGIC \
bitstream Logic Crypto 5
i § . S -
Spoofing ottt :] Engines *
Replay Spoofin
2l Local| DEMA P 9
Local EMA Cl'yptc Memories *_ Fault injection Replay
Fault injectjon Engine Invasive attacks
i
-
Invasive attacks \ Key(s) TRNG WP
1
Power supply

Global DPA/DEMA

Bitstream importance
- Define hardware behaviour
- Boundary between FPGA vendors and system designer responsibilities

- FPGA vendors have to provide basic security mechanisms (encryption, integrity)

Bitstream security issues

- Copying or cloning

- Reverse engineering

- Tampering (modify hardware behaviour)

- Secure key management

Context

State of the art

Proposed solutions
Application and evaluation

Conclusion / Perspectives

Bitstream encryption

SBM FPGA
Bitstream
Header | Encrypted | CRC | Footer J. Decryptor . | User Logic
body i EHE
Check [™]
BB Key_,
i
Battery

- Mainly used against copying and reverse engineering
- Makes tampering difficult

- Allows designers to hide secrets

Bitstream integrity

SBM FPGA
Bitstream Y

s MAC engine :
Header | Encrypted | MAC | Footer S User Logic

body

. pw| Decryptor
L

ST 4
Key,_,

A

T
X

s
’ 3
; y
1 5

1 1

v 1

. Battery !

1 ¢

" ;
: ;
h 0

A 2

- Make tampering “impossible”

- Only ACTEL claims to provide strong integrity mechanism

Bitstream integrity

I,
- . MAC
Actel Designer Validation
Software
Decrypted
Programming Bitstream
File Generation ‘f
with AES AES —
Encryption . AES
FJI Key DecryptionCore FlashROM Core FBs
D

Transmit Medium /
Public Network

Encrypted Bistream

ACTEL ProASIC 3 documentation

Bitstream integrity : attacking CRC

- SRAM FPGAs use 32 bits CRC

- Attacker can perform attacks with only 232 tries

Bitstream integrity : attacking CRC

- SRAM FPGAs use 32 bits CRC

- Attacker can perform attacks with only 232 tries

Flipped ciphertext bits
Initialization Vector (V) Ciphertext = Ciphertext
I I [(TTTTT] ITTTTTTT1]
v . :
Block Cipher Block Cipher
Key —=| Decryption || Key = Decryption
. jud - L -
Y
; ENEEEE B
¥ Plaintext Plaintext ™
Garbled decryption Flipped plaintext bits

Modification attack or transmission error for CBC

- Attacker cannot finely control its attack for the first block

Contextl state of the art | Propositions | Conclusion

Example :
- Attacker targets a RNG block

- He changes one 128 bits block in
the encrypted bitstream

- The system will probably be
functional but the RNG don't

Secure remote update

- Remote update is encouraged by FPGA vendors :
* Altera IP core : Remote Update Circuitry (ALTREMOTE_UPDATE)

* Xilinx white paper : Internet Reconfigurable Logic

"'"'.
Development 5 Device Control Configuration
Location w Module Memory

Device Configuration
Altera remote update schematic

Secure remote update

Internet Reconfigurable
Logic (IRL)

Remote update of software and hardware

27 XILINX

Get your
Customers to
Market Early

Fix a bug

Enhance
Performance

Ensure
Compatibility

However they do not provide simple solution against replay

Secure remote update

SD Plaintext Bitstream User Logic |F
+Ei G Decry P
-ption G
. o P B A
Encryption MNetwork
(e.g. Internet or LAN) I{na:f
KENC+

"HACKER
Encrypted Bitstream
Ci

Version i

Secure remote update

SD Plaintext Bitstream User Logic |F
+Ei G | | Decry P
_pti G
c ption B A
Encryption MNetwork
Y (e.g. Internet or LAN) I{ne:f
Kenc
"HACKER N
Version |
C; L
: Versioni+n
SD Plantext B =
Plamtextﬁitstream = E
\ 4 Ci| | Decry P
Ci -ption G
Encryption - Bi A
Network
I{ENC.+ (e.g. Internet or LAN) I{Dng

Replay attack

Key management (SRAM FPGAs)

- No special feature for user key management

- System designer can hide keys inside bitstream

System designer FPGA
— = |Encrypted | __p. |
bitfile Encryptor bitstream Decryptor User Logic
010101000 HHAAHHHRH Design
00 KEY 110 RARHAHR IR @l
7 4}57 KeyB“

Hidden key inside bitstream

- But : No simple solution for system owner to personalize its own keys

- But : A bitstream per key is needed

Key management (User Flash)

FPGA

User Logic User Flash

- Key,
il
- Key,

Design

- Key generation can be performed by the system owner
- The same bitstream can be used for each systems
- Non volatile storage allows PIN code implementation

- But no solution to erase keys when FPGA is not powered

Secure bitstream management
summary

- Bitstream encryption is well supported
- Bitstream integrity is generally weak

- Bitstream update management is subject to replay X

- Key management is generally not easy

Context

State of the art

Proposed solutions

Application and evaluation

Conclusion / Perspectives

Key management (SRAM)

Encrypted Encrypted
Bitstream Bitstream
(using K)) (using K,)
— —-
Empty Slot User Key
y 4

Key management (SRAM)

Entity
Encrypted K, Encrypted
Bitstream i Plain text v Bitstream
using K : using K
(using K. .| Decryptor | .| Pitstream Encryptor - (using K)
Empty Slot User Key
i
4 Key|Injection /
BNG | .| UserKey

- An empty slot receives a user generated key
- Provide a solution for on the field key generation

- System designer can provide the same bitstream for each system

Key injection (application on NETHEOS platform)

- The secured pProcessor performs the key injection

- The yProcessor stores the bitstream key K, in its secured memory

Start reading MVM -
WS [each 128 bit block]

[emptySlot offset 2
I
Inject key

B
Compute new CRC value

< Decrypt the block with Kb

[}

By
re-encrypt the block: using kb

Write new block to MVM -

Wirite new CRC value to WH

- This process can also be performed by the FPGA itself (not yet implemented)

Secure remote update (solution 1)

Main idea :
- Each bitstream version embeds a unique tag and a unique key (K)

- An external trusted party attest the current bitstream version

FPGA Trusted party
User Logic
Design TRNG Kip
Ko Encryptor N 1:::1 = Decryptor
TAG

But :
- System designer need to implement an encryptor

- Regular polling is needed
- The problem is reported to the trusted party

Secure remote update (solution 1)

Trusted party FPGA

Monce
B

Simplified protocol :

N [while 1]

compute AES_enc(MOMNCE| TAG) with I{IDD]

‘Aumenticatinn Response |

verify AES_dec(NOMNCE| TAG)=NONCE|TAG with I{IDbl

E_ [Good response 7]

continue D

stop the system :
wait for Xps I

Trusted party

Implementation of secure remote update (solution 1)

FPGA Trusted party
User Logic
Design «— » T“:'G
Ko Encryptor Norice Decryptor

Trusted party : secured pProcessor
- The pProcessor embeds a TRNG that generates nonces regularly
- An hardware AES decryptor is used to verify FPGA responses

FPGA :
- An hardware AES encryptor is (re)used to generate responses
- The cost is about 800 Slices and 10 RAM blocks
- polling is performed every 10 seconds

Secure remote update (solution 2)

Main idea :
- Each design version embeds a unique tag and a nonce

- Internal Flash stores a reference TAG

System designer FPGA
Decryptor User Logic
bitfile Encryptor » | Encrypted -
bitstream T Design
010101000 TAG
00 TAG 10 BHHBRRRIH Keyg,
01NONC % RURHHAHHA 7
once
I/
.
Nonce |
Internal Flash TAG
Advantage :

- System designer do not need to implement any cryptographic function
- An other Nonce can be used for acknowledgment

Secure remote update (solution 2)

Simplified protocol :

System Deslgner

m [Remote Update]

FPGA

UpdateCommand(Nonce) -

Werify that Nonce is validDI

Increment Flash TAG and stop the s*,rstemDI

< (optional} acknowledgment
Mew bitstream version (new TAG and MNew Nnnce!.

[each power up]

Verify that Design TAG = Flash TAG (if invalid stop the s*,rstemj?l

FPGA

System Designer

Secure remote update (solution 3)

sD

Authenticated Encryption
Engine

SD's Database

DevicelDl | BWMp | K M

— Metwork
War

e.g. Igernet ar LAR)

D Trusted Area

[_] Hon Volatile Register

BYN : Bitstream Yersion Humber

K : Secret Key for Authenticated Encryption
:% Renwote Adversaries * Local Adversary

Solution proposed at FPL'08

Tag Update Logic User Logic
and Courter
. I:E@zéé@
Ll Authenticated |
- Encryption Engine
LFAL Y[AET e,
SEM
FPGA
i $
| Maon Volatile Memory
itstream Storage) FPGA -Based
System

Secure remote update (solution 3)

Simplified protocol :

System Designer FPGA

WETSS [Remote Updatel]
L TAG update == AES (UpdateCommand|TAG) with K.

Verify that UpdateCommand and TAG are vali-:?'

If valid increment its own TAGB|

< {optional) acknowledgment

Verify aclmc:wledgmen?l

i bitstreamn _+ MAC(Bitstream| TAG) >
m [each power gp]

Werify that the bitstream MAC is valicllhl

FPGA

System Designer

Secure remote update (summary)

Development time

Logic gates cost

Cost for FPGA Additionnal
for System for system
vendors) : cost
Designer designer
Solution Suitable devices
| All;;(c}ri[;ted None High High Regular polling
. Low for Flash based :

2 ACTEL Fusion EPGAs Medium Low None
3 Currently none Medium Low None None

Context
State of the art

Proposed solutions

Application and evaluation

Conclusion / Perspectives

The perfect FPGA for secured application

- Strong bitstream encryption

- Strong bitstream integrity mechanisms \/

- Fast bitstream keys deletion (using a battery) SRAM
- User flash memory for less sensitive keys and certificates Flash

- Non-volatile reprogram protections (like ACTEL Flash Lock) Flash

- Downgrade protected (using solution 2 or 3) Flash

- Battery powered user memories for PIN code implementation and
sensitive key storage (unreachable from external los)

Thank you

Benoit Badrignans
Benoit.Badrignans@lirmm.fr LIRMM / NETHEOS
b.badrignans@netheos.net

Lionel Torres LIRMM
lionel.torres@lirmm.fr

41

mailto:Benoit.Badrignans@lirmm.fr
mailto:b.badrignans@netheos.net
mailto:lionel.torres@lirmm.fr

