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Motivations

I Random numbers often employed in :
Key generation process,
Authentication protocols,
Padding,
Digital signature scheme,
Encryption algorithms (IV)

I Security depends greatly on the quality of the randomness source
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FIG.: General principle of random numbers generation

I Statistical tests needed at different levels,
I Analysis of statistical tests results must be done carefully,
I Derived conclusion from the tests about the RNG security must be done

even more carefully...
I Question :

« How can security be evaluated for random numbers generation ? »
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Common ways of answering the question (1)

I Usual (and quick) answer : (T)RNG’s ability to pass a battery of
statistical tests : FIPS, NIST, DieHard

I Necessary but not sufficient condition

Example

Sunar’s principle with N Ring Oscillators, without any jitter :
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Sunarn =

(
N +

N

∑
k=1

⌊
ϕ0 +n×Tclk mod Tk

Hk

⌋)
mod 2

Sequence produced by this deterministic equation pass the FIPS 140-1
tests starting from N ≥ 17 << 114...

Can we conclude it is randomness ?
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Common ways of answering the question (2)

I Problem in previous example : the produced sequence pass some
statistical tests with a null entropy...

I The same problem appears if statistical tests are performed after
post-processing (resilient function for example) - Unchanged entropy

I AIS 31 : « Entropy/random bit should be sufficiently large »
I Problem : Entropy is not a property of observed random numbers... but

of random variables

I Preferable answer : Mathematical model of the noise source is needed
I Difficulties : strong assumptions needed to have conclusion from

mathematical equations...
... but not always easy to verify their validity in hardware
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Source of randomness used in this work

Ideal Clock Signal Periods
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I Phase jitter : δn = tn−nT0

I Period jitter : δ′n = (tn− tn−1)−T0 = δn−δn−1

I Cycle-to-cycle jitter : δ′′n = (tn− tn−1)− (tn−1− tn−2) = δ′n−δ′n−1
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Jitter components

I Deterministic jitter (DJ)
Power supply variation
Cross talks
Electro-magnetic interference
Simultaneous switching outputs

I Random jitter (RJ)
Sum of many independent contributor inherent to any electric circuits

Thermal vibrations : crystal structures, conductor atoms
Many other minor contributions

Obeys the central limit theorem⇒ Gaussian probability distribution
I Difficulties to treat both jitter components in a model (not the same

behaviour)
I Deterministic jitter remains always present in electronic devices but can

sometimes be reduced

I First approach in our model : study with the random part of the jitter only
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Basic principle

I Class of RNGs based on sampling one clock signal with another

 

Gen1 

Gen2 

Sampler Post-processing 

das 
numbers 

Internal 
random 
numbers 

clj 

clk 

I Optional post-processing : increases statistical properties of produced
sequences (not considered in this work)

I Two jittery clocks : one sampled by another→ production of digitized
analog signal (das) numbers
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Coherent sampling

I Boyan :
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Assumptions - Strategy

I Focus on random (e.g. Gaussian) jitter only
The period T of one signal is considered as a random variable
T is supposed to follow a Gaussian distribution with mean µ and standard
deviation σ :

T ∼N (µ,σ)

I Description of the ideal case (σ = 0) :
Easy !
Useful : corresponds to the mean behaviour

I Addition of the random jitter
I (Addition of the deterministic jitter→ future work)
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Ideal case

clj

clk

Tclk Tclk Tclk Tclk Tclk

ϕ0 ϕ2ϕ1 ϕ3 ϕ4 ϕ5

ϕ0

I Tclk and Tclj are constant functions of time

ϕi expression and corresponding sampled bit Bi logical value

ϕi = ϕ0 + i×Tclk mod Tclj

Bi = 1−
⌊

ϕi

Tclj/2

⌋
(assuming a 50/50 duty cycle)
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Adding a random jitter to each clock signal

Tclk ∼N (µk,σk) and Tclj ∼N (µj,σj)

clj

clk

Tclk1
Tclk2

Tclk3
Tclk4

Tclk5

ϕ0 ϕ2ϕ1 ϕ3 ϕ4 ϕ5

ϕ0

ind5

ϕi expression

ϕi = ϕ0 + i×Tclk mod Tclj
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clj

clk

Tclk1
Tclk2

Tclk3
Tclk4

Tclk5

ϕ0 ϕ2ϕ1 ϕ3 ϕ4 ϕ5

ϕ0

ind5

ϕi expression

ϕi = ϕ0 + (Tclk1 + · · ·+Tclki)−
(

Tclj1 + · · ·+Tcljindi−1

)

indi = min

{
m |

m

∑
j=1

Tcljj ≥ ϕ0 +
i

∑
j=1

Tclkj

}
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Limitations

I Assuming {Tclkj}
(

resp. {Tcljj}
)

are independent realizations of the

same random variable Tclk (resp. Tclj)

Tclkacc(i) :=
i

∑
j=1

Tclkj ∼N
(

i×µk,
√

i×σk

)
Tcljacc(indi−1) :=

indi−1

∑
j=1

Tcljj ∼N
(
(indi−1)×µj,

√
indi−1×σj

)
I Problem : indi = min

{
m | Tcljacc(m)≥ ϕ0 +Tclkacc(i)

}
I Thus ϕi = ϕ0 +Tclkacc(i)−Tcljacc(indi−1) cannot be expressed as a

random variable following a Gaussian distribution.
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Absolute jitter : limitations

I Problem 1 : limitations of the mathematical model
I Problem 2 : absolute jitter is very difficult (if not impossible) to measure

inside the chip
I Problem 3 : the generator extracts the relative jitter between two (or

more) clocks and not the absolute jitters
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From absolute to relative jitter (1)

I Absolute jitter can describe a more general case (free running oscillator,
jitter accumulation)

I Mathematical model limited without further (strong ?) assumptions
I Idea : the use of coherent sampling and the relationship between :

input frequency (fi)
sampling frequency (fs)
number of cycles (Ncyc)
number of samples (Msamp)

I Practical realization : PLLs
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From absolute to relative jitter (2)
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clk Gen 

I Relative jitter between clj and clk
I Jitter accumulation : jitter accumulates !
I But : phase locking effect (PLL)→ bounded accumulation
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Ideal case

clj

clk

Tclk Tclk Tclk Tclk Tclkϕ0

ϕ0 ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

TQ = KM ×Tclj = KD ×Tclk

ϕi = ϕ0 + i×Tclkid −
⌊

ϕ0

Tcljid
+

i×KM

KD

⌋
×Tcljid

Bi = 1−
⌊

2×
(

ϕ0

Tcljid
+

i×KM

KD
−
⌊

i×KM

KD
+

ϕ0

Tcljid

⌋)⌋
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Adding the random jitter on clj (1)

I Relative jitter→ Tclk supposed to be ideal
I Tclj1 + · · ·+Tcljm = Tcljacc(m)∼N

(
m×Tcljid ,σj

)
ϕi and indi

ϕi = i×Tclkid +ϕ0−Tcljacc(indi−1)

indi = max{m | Tcljacc(m−1) < i×Tclkid +ϕ0}

µ µ+3σµ−3σ

99,74%

Tcljacc(m−1)≤99,74% (m−1)×Tcljid +3σj

Then

indi = max{m | (m−1)×Tcljid +3σj < i×Tclkid +ϕ0}

indi = max
{

m | m−1 <
i×Tclkid +ϕ0−3σj

Tcljid

}

indi =
⌊

i×Tclkid +ϕ0−3σj

Tcljid

⌋
+1
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Adding the random jitter on clj (2)

I Dependency between Tclkacc(i) and Tcljacc(indi−1) has been removed
I ϕi can be seen as realizations of a random variable φi following a

Gaussian distribution :

The random variable φi

φi ∼N

i×Tclkid +ϕ0−
⌊

i×Tclkid +ϕ0−3σj

Tcljid

⌋
︸ ︷︷ ︸

indi−1

×Tcljid ,σj


I ϕi are defined by the difference between a sum of Tclj periods and a

sum of Tclk periods
Two equivalent interpretations :

1 Set of random realizations of Tclj then compute exactly ϕi
2 Tclj is supposed to be ideal and all ϕi are seen as realizations of the

random variable φi above

I Second approach is chosen
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Period reconstruction and consequences

I ϕi realizations are not sorted
I Fischer and Drutarovsky proposed the following reconstruction

(assuming KM and KD are relatively primes) :

i(j) = j×K−1
M mod KD

Then

0 < ϕi(1)−ϕ0 mod Tcljid < · · ·< ϕi(KD−1)−ϕ0 mod Tcljid

The first (i≥ 1) sample after the reorganization is defined to be the
closest one to the initial phase ϕ0 = ϕj(0)

I Reconstruction also allows a simplified expression of the random
variable φi(j) :

φi(j) ∼N
(
ϕ0 + j×∆ mod Tcljid ,σj

)
where ∆ =

Tcljid
KD

is the distance between ϕi(j) and ϕi(j+1)

⇒ mean values of φi are uniformly distributed in the Tcljid period
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Probability to sample a ’1’

φi(j) ∼N
(
ϕ0 + j×∆ mod Tcljid ,σj

)
I Means of φi are in the [0,Tcljid [ interval
I Due to jitter, realizations ϕi(j) can be outside this interval

0 Hcljid
Tcljid

3Hcljid

P(Xi(j) =′ 1′) = P(0 < ϕi(j) < Hcljid )
+ P(Tcljid < ϕi(j) < 3Hcljid )

(
3σj << Hcljid ⇒ P(ϕi(j) > 3Hcljid ) = 0

)
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Final expression

P
(
Xi(j) =′ 1′

)
= P

(
0 < ϕi(j) < Hcljid

)
+P

(
Tcljid < ϕi(j) < 3Hcljid

)

P(Xi(j) =′ 1′) = P
(
ϕi(j) < Hcljid

)
−P

(
ϕi(j) < 0

)
+1−P

(
ϕi(j) < Tcljid

)
We set µj = ϕ0 + j×∆ mod Tcljid , then

P(Xi(j) =′ 1′) =
1√

2πσj

Z Hcljid

0
e
−

(x−µj)
2

2σ2
j dx+1−

Z Tcljid

−∞

e
−

(x−µj)
2

2σ2
j dx

 (1)
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Reconstructed period (σj = 60ps, ϕ0 = Tcljid /4, KD = 203, KM = 260)

From equation 1, we plot all the
(
i(j),P(Xi(j) =′ 1′)

)
for j = 1 to j = KD
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VHDL simulation

I Goal : validation of the mathematical model (random jitter only)
I Signals generated in half-periods with Matlab (to obtain a Gaussian

population)
I Signals are injected in the behavioral VHDL simulation
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I Parameters : fclj = 74.286 MHz, fclk = 58 MHz, σj = 60ps(
Note :

fclj
fclk

= KM
KD

)
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VHDL results
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I Very close to the graph obtained with a mathematical equation... but still
not the reality
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Jitter measurement
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I Relative jitter corresponds to the width of edges (rising and falling) in the
Tcljid period

I Distance between two consecutives samples is ∆ =
Tcljid
KD

I 99,74% of the gaussian population is in an intervall of length 6σj
I We count 5∆ < x < 6∆ on the rising (or falling) edge

x∆ = 6σj⇒ σj = x
6 ∆

σj = x
6 ×

1012

74,286×106×203 = x
6 ×66,31ps⇒ 55ps < σj < 66ps
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Hardware experiment

I Actel AFS Evaluation board (Actel Fusion FPGA device
AFS6000FG256ES) for RNG implementation

I External 40 MHz quartz oscillator
I Two embedded PLLs to generate two pairs of clock signals

1 First configuration : KM = 260 and KD = 203
division factor multiplication factor frequency (MHz)

PLL1 (clj) 14 26 74,286
PLL2 (clk) 10 29 58

2 Second configuration : KM = 532 and KD = 493
division factor multiplication factor frequency (MHz)

PLL1 (clj) 17 28 65,88
PLL2 (clk) 19 29 61,05
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Hardware results

I First experiment

I We count between 5 and 6 ∆⇒ real results very close to the
mathematical and behavioral model

I In the case of random jitter only, we might conclude : σj ≈ 55ps
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Hardware results

I Second experiment

I We count ≈ 13 ∆ on falling (or raising) edge
⇒ σj = 13

6 ∆ = 13
6 ×

106

493×61,053 ≈ 72ps (far from 55ps...)
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Conclusion

I Security evaluation of TRNG cannot be reduced to an ability to pass a
battery of statistical tests

I Entropy estimators must be computed on random variable as close as
possible to the noise source

I Need of a mathematical model
Not an easy task
Based on assumptions that should be verified by hardware experiments
What we measure outside is not what is going on inside...

I Our model gives good results with behavioral VHDL simulation⇒
equations are correct

I But ! In reality, there are other aspects that influence the relative jitter
(deterministic jitter component added by the PLL)

I Future work : include the deterministic jitter in the model
I Then compute entropy estimators
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Thank you for your attention
Questions ?
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