Compact AES S-Boxes Initialization in Low Power Non-Volatile FPGAs

New efficient S-box generation in logic area based on a pair of LFSRs

Miloš Drutarovský, Ľuboš Gašpar

Department of Electronics and Multimedia Communications Technical University of Košice, Slovak republic

Viktor Fischer, Nathalie Bochard

Laboratoire Traitement du Signal et Instrumentation UMR 5516 CNRS Université Jean Monnet Saint-Etienne, France

Outline

- Overview of AES cipher implementations in FPGAs
- Most common ways for implementing S-boxes
- S-box generation in logic using pair of LFSRs
- AES cipher implementation
- Comparison of size, speed and power consumption of several S-box implementations
- Comparison of size, speed and power consumption of complete AES implementations
- Conclusions

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 2 on a pair of LFSRs

AES cipher overview

- Symmetric cipher containing the following operations:
 - Non-linear byte substitution function (SubBytes)
 - Cyclic shift of rows (ShiftRows)
 - A mixing operation operating on columns (MixColumns)
 - Addition of a round key (AddRoundKey)
- Final performance of the cipher is mostly determined by
 - SubBytes operation
 - MixColumns operation

Power consumption issue

- 75 % consumed by composite S-boxes (A. Satoh et al., IBM)

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based on a pair of LFSRs

Outline

- Overview of AES cipher implementation in FPGAs
- Most common ways for implementing S-boxes
- S-box generation in logic using pair of LFSRs
- AES cipher implementation
- Comparison of size, speed and power consumption of several S-box implementations
- Comparison of size, speed and power consumption of complete AES implementations
- Conclusions

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 4 on a pair of LFSRs

SubByte implementations (1/6)

- SubByte operation consists of the following two successive sub-operations:
 - Multiplicative inverse in Galois Field GF(2⁸) expressed by AES irreducible polynomial
 - Affine transformation applied to the result of the previous operation

$$AT(c) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} c_7 \\ c_6 \\ c_5 \\ c_4 \\ c_3 \\ c_2 \\ c_1 \\ c_0 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 5 on a pair of LFSRs

SubByte implementations (2/6)

- Two main approaches in implementation of SubByte function in hardware
 - Using substitution tables (memory blocks) initialized with Sbox values given in standard (NIST, FIPS-197)
 - Implementing the two operations of the substitution in hardware
- Most preferred implementations of SubByte operation
 - FPGAs: using LUTs (good logic area/memory balance, smaller delays, not suitable for pipelining)
 - ASICs: using "composite field" approach (all in logic area, bigger delays in combinatorial logic, suitable for pipelining)

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based on a pair of LFSRs

SubByte implementations (3/6)

LUT based approach

"composite field" approach (later just COMB_ONLY)

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based on a pair of LFSRs

SubByte implementations (4/6)

- Aim: to propose power-aware architecture of iterative AES cipher
 - Fact: Non-volatile FPGAs consume much less energy than their volatile counterparts
- When implementing LUT based solution:
 - in volatile FPGAs: initialization of S-boxes is carried out during configuration of the FPGA
 - in non-volatile FPGAs: there is no initial configuration stage!
- Problem: How to generate substitution tables inside the FPGA?

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based on a pair of LFSRs

SubByte implementations (5/6)

- Techniques for RAM initialization
 - using JTAG interface not practical because of a security issue
 - using embedded FLASH memory FLASH memory is not available in every low-power device!
 - using S-box generator in the logic area
- Interfacing the generator with a RAM memory
 - S-box and S-box⁻¹ has to be stored inside the RAM
 - using True Dual Port RAM enables both S-box and S-box⁻¹ to be stored simultaneously

SubByte implementations (6/6)

- Initialization of True Dual Port RAM using S-box generator
- This S-box generator consists of 8-bit binary counter and "composite field" S-box (later just COMB_LUT)
 - Disadvantage:
 - slow (big delay)
 - occupies 170 tiles
 - $-\uparrow$ power consumption
 - Better solution:
 - Using S-box generator
 based on a pair of LFSRs

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 10 on a pair of LFSRs

Outline

- Overview of AES cipher implementation in FPGAs
- Most common ways for implementing S-boxes
- S-box generation in logic using pair of LFSRs
- AES cipher implementation
- Comparison of size, speed and power consumption of several S-box implementations
- Comparison of size, speed and power consumption of complete AES implementations
- Conclusions

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 11 on a pair of LFSRs

Principle of efficient generation of S-boxes (1/9)

- S-boxes generation requires understanding some basic properties of Galois Field
 - Every non-zero element can be obtained as a power of primitive element α : α^0 , α^1 , α^2 , ..., α^{254}
 - Powering of primitive element β which is the inverse to α : $\beta^0, \beta^1, \beta^2, ..., \beta^{254}$

$$\beta = \alpha^{-1}$$

Consequences:

 Sequences generated as powers of α and β are inversed

$$\begin{aligned} \alpha^0 \otimes \beta^0 &= \alpha^0 \otimes \alpha^{255} = \alpha^{255} = 1\\ \alpha^1 \otimes \beta^1 &= \alpha^1 \otimes \alpha^{254} = \alpha^{255} = 1\\ \alpha^2 \otimes \beta^2 &= \alpha^2 \otimes \alpha^{253} = \alpha^{255} = 1\\ \vdots &\vdots &\vdots\\ \alpha^{254} \otimes \beta^{254} &= \alpha^{254} \otimes \alpha^1 = \alpha^{255} = 1\\ \alpha^{255} \otimes \beta^{255} &= \alpha^{255} \otimes \alpha^0 = \alpha^{255} = 1 \end{aligned}$$

- Simultaneous powering of α and β starting with α^0 and β^0 forms multiplicatively inversed pairs

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 12 on a pair of LFSRs

Principle of efficient generation of S-boxes (2/9)

- Powering can be represented as multiplications in the ring
- For complete S-box generator, Affine transformation has to be applied on one of the rings
- Each ring can be implemented as 8-bit register with combinatorial multiplier in the feedback $\otimes \alpha$ $\otimes \beta$ Successive $\otimes \beta$ Successive $\otimes \beta$ \otimes

Generator

output

Principle of efficient generation of S-boxes (3/9)

• The smallest primitive element in the GF(2⁸) expressed by AES irreducible polynomial

 $m(x) = x^8 + x^4 + x^3 + x + 1$

is $\alpha = 03_{16}$ and its inverse is $\beta = \alpha^{-1} = F6_{16}$

 From other point of view, implementation of such multipliers in combination with registers results in a pair of 8-bit Non-Linear Feedback Shift Registers (NLFSRs)

Principle of efficient generation of S-boxes (4/9)

- Lets try to improve the principle such that the implementation results in a pair of LFSRs in series with combinatorial block
- Let A be one root of m(x), the polynomial basis will be
 [A⁷, A⁶, A⁵, A⁴, A³, A², A¹, A⁰],
 where A= 02₁₆ is the root of AES irreducible polynomial
- However, 02₁₆ is not a primitive element

Principle of efficient generation of S-boxes (5/9)

 Lets examine GF(2⁸) expressed by the smallest primitive polynomial of the 8th degree

 $m'(x) = x^8 + x^4 + x^3 + x^2 + 1$

- Element **02₁₆** is a primitive element
- Element 03₁₆ is the root
- Thus, in this field $\alpha = 02_{16}$ and its inverse $\beta = \alpha^{-1} = 8E_{16}$
- Implementation leads to a pair of LFSRs

Principle of efficient generation of S-boxes (6/9)

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 17 on a pair of LFSRs

Principle of efficient generation of S-boxes (7/9)

- However output of these LFSRs have to be transformed from GF(2⁸) expressed by m'(x) to GF(2⁸) expressed by AES irreducible polynomial m(x)
- Our **Basis Transformation** (BT) has the following form

$$BT(d) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} d_7 \\ d_6 \\ d_5 \\ d_4 \\ d_3 \\ d_2 \\ d_1 \\ d_0 \end{pmatrix} = \begin{pmatrix} d_7 \\ d_7 \\ \oplus \\ d_7 \\ \oplus \\ d_7 \\ \oplus \\ d_6 \\ \oplus \\ d_7 \\ \oplus \\ d_6 \\ \oplus \\ d_5 \\ \oplus \\ d_1 \\ \oplus \\ d_7 \\ \oplus \\ d_6 \\ \oplus \\ d_5 \\ \oplus \\ d_1 \\ \oplus \\ d_7 \\ \oplus \\ d_6 \\ \oplus \\ d_5 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_7 \\ \oplus \\ d_6 \\ \oplus \\ d_5 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ d_1 \\ \oplus \\ d_2 \\ \oplus \\ d_1 \\ \oplus \\ \\ (d_1 \\ \oplus \\ d_1 \\ \oplus \\ (d_1 \\ \oplus \\ d_1 \\ \oplus \\ (d_1 \\ \oplus$$

 This Basis Transformation has to be implemented as a combinatorial block in series with the LFSRs

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 18 on a pair of LFSRs

Principle of efficient generation of S-boxes (8/9)

- Moreover, Affine transformation has to be applied at the output of one block of the Basis transformation to obtain complete generator
- Both transformation can be combined together
 obtaining Combined Affine and Basis Transformation

$$\mathbf{AT}_{\mathbf{B}}\mathbf{T}(\mathbf{d}) = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} d_7 \\ d_6 \\ d_5 \\ d_4 \\ d_3 \\ d_2 \\ d_1 \\ d_0 \end{pmatrix} \oplus \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} d_7 \oplus d_4 \oplus d_4 \oplus d_2 \\ d_7 \oplus d_6 \oplus d_5 \oplus d_4 \oplus d_2 \\ d_7 \oplus d_6 \oplus d_5 \oplus d_0 \\ d_7 \oplus d_6 \oplus d_4 \oplus d_3 \oplus d_0 \\ (d_7 \oplus d_5 \oplus d_4 \oplus d_2 \oplus d_0)^{'} \\ (d_7 \oplus d_5 \oplus d_4 \oplus d_2 \oplus d_0)^{'} \\ (d_7 \oplus d_5 \oplus d_4 \oplus d_2 \oplus d_0)^{'} \end{pmatrix}$$

• Operation ()' represents logic negation

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 19 on a pair of LFSRs

Principle of efficient generation of S-boxes (9/9)

 The final implementation of the S-box based on a pair of LFSRs + transformation blocks (later just LFSR_LUT)

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 20 on a pair of LFSRs

Outline

- Overview of AES cipher implementation in FPGAs
- Most common ways for implementing S-boxes
- S-box generation in logic using pair of LFSRs
- AES cipher implementation
- Comparison of size, speed and power consumption of several S-box implementations
- Comparison of size, speed and power consumption of complete AES implementations
- Conclusions

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 21 on a pair of LFSRs

AES cipher implementation (1/2)

- Aim:
 - implementation of shared AES cipher/decipher
 - advanced resource sharing between cipher and decipher:
 - AddRoundKey operation
 - SubByte operation
 - InvMixColumns shared with MixColumns (InvMixColumns serial decomposition)
 - Forward key expansion share resources with backward key expansion
 - Input and Output registers

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 22 on a pair of LFSRs

AES cipher implementation (2/2)

- Shared AES cipher/decipher implementation
 - 16 SubByte blocks implemented using 8 True Dual Port RAMs

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 23 on a pair of LFSRs

Outline

- Overview of AES cipher implementation in FPGAs
- Most common ways for implementing S-boxes
- S-box generation in logic using pair of LFSRs
- AES cipher implementation
- Comparison of size, speed and power consumption of several S-box implementations
- Comparison of size, speed and power consumption of complete AES implementations
- Conclusions

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 24 on a pair of LFSRs

S-box implementations comparison (1/4)

- Compared implementations
 - COMB_ONLY: realized entirely in logic area
 - COMB_LUT: employed 4-kbit True Dual Port RAM
 - LFSR_LUT: employed 4-kbit True Dual Port RAM
- Each port of 4-kbit True Dual Port RAM block can implement two independent dual S-boxes used in parallel
 - For fare comparison it is necessary to implement two parallel S-boxes in COMB_ONLY solution too
- Used hardware platform
 - Actel Igloo AGL600 device

S-box implementations comparison (2/4)

- area and speed values and the power consumption estimation given for the maximum module frequencies
- COMB_LUT and LFSR_LUT concern S-box substitution table generation

,	Area	f _{max}	Power@f _{max} (mW)			
	(Tiles)	(MHz)	Tot	Mem	Gate	Net
COMB_ONLY	274	29.4	1.1	-	0.3	0.8
COMB_LUT	170	35.7	1.2	0.2	0.2	0.8
RAM	-	-	0.3	0.2	0.0	0.1
S-box	-	-	0.7	-	0.2	0.5
LFSR_LUT	75	73.5	1.2	0.2	0.2	0.6
RAM	-	-	0.3	0.2	0.0	0.1
S-box	-	-	0.5	-	0.1	0.4

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 2 on a pair of LFSRs

S-box implementations comparison (3/4)

• estimation given for the 24 MHz module frequency

	Power@24 MHz (mW)				
	Tot	Mem	Gate	Net	
COMB_ONLY	0.9	-	0.2	0.7	
COMB_LUT	0.8	0.1	0.2	0.5	
RAM	0.2	0.1	0.0	0.1	
S-box	0.4	-	0.1	0.3	
LFSR_LUT	0.4	0.1	0.1	0.2	
RAM	0.2	0.1	0.0	0.1	
S-box	0.2	-	0.1	0.1	

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 27 on a pair of LFSRs

S-box implementations comparison (4/4)

Speed concerns

- In LUT based solutions: after initialization, the speed of the operation is limited only by the maximum frequency of a RAM
- In COMB_ONLY: the speed of the operation is limited by the delays of logic elements and routes
- Generation of S-box table with LFSR_LUT solution can be performed almost two times faster than with COMB_LUT
- Area concerns
 - LFSR_LUT solution utilizes only 75 tiles when compared to 170 tiles utilized by COMB_LUT solution and 274 tiles utilized by COMB_ONLY solution
- Power concerns
 - LFSR_LUT solution consumes half the power when compared with two other solutions

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 28 on a pair of LFSRs

Outline

- Overview of AES cipher implementation in FPGAs
- Most common ways for implementing S-boxes
- S-box generation in logic using pair of LFSRs
- AES cipher implementation
- Comparison of size, speed and power consumption of several S-box implementations
- Comparison of size, speed and power consumption of complete AES implementations
- Conclusions

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 29 on a pair of LFSRs

AES implementations comparison (1/6)

Implementation details

- USB interface included to source AES 128-bit data and 128-bit key inputs
- Hardware platform
 - Actel Igloo AGL600 device
 low-power device
 - Actel Fusion AFS600 device high-performance device
 - Altera Cyclone III C5E144
- low-cost SRAM based device

AES implementations comparison (2/6)

- Implementation results of the AES cipher including USB interface in the Altera Cyclone III C5E144 device
 - Results estimated by Quartus PowerPlay Power Analyser

	USB	AES & USB
	only	LFSR_LUT
f _{max} (MHz)	-	111.4
Total logic elements	463	1705
ALMs	455	1678
Regs	102	505
Memory blocks	0	10
Power@24MHz (mW)	-	82.2
Power@0MHz (mW)	-	53.1

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 31 on a pair of LFSRs

AES implementations comparison (3/6)

- Implementation results of the three AES cipher versions including USB interface in the Actel Fusion AFS600 device
 - Results measured on the Actel Fusion evaluation board

	USB	AES & USB			
	only	COMB	COMB_LUT	LFSR_LUT	
f _{max} (MHz)	-	28.7	45.8	58.5	
Tiles: Total	618	5499	3096	2987	
Combin.	288	4569	2297	2171	
Sequen.	330	930	799	816	
Memory blocks	0	0	10	10	
Power@24MHz (mW)	-	125.3	57.2	59.3	
Power@10MHz (mW)	-	66.4	30.8	31.7	
Power@0MHz (mW)	-	8.5	8.2	8.2	

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 32 on a pair of LFSRs

AES implementations comparison (4/6)

- Implementation results of the three AES cipher versions including USB interface in the Actel Igloo AGL600 device
 - Results measured on the Actel Igloo evaluation board

	USB	AES & USB			
	only	COMB	COMB_LUT	LFSR_LUT	
f _{max} (MHz)	-	11.1	18.9	24.3	
Tiles: Total	623	5721	3198	3087	
Combin.	293	4791	2397	2271	
Sequen.	330	930	801	816	
Memory blocks	0	0	10	10	
Power@24MHz (mW)	-	-	-	36.8	
Power@10MHz (mW)	-	43.7	15.7	16.9	
Power@0MHz (mW)	-	0.3	0.3	0.3	

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 33 on a pair of LFSRs

AES implementations comparison (5/6)

Speed concerns

- The proposed AES with LFSR_LUT solution more than doubles the maximum frequency for both Actel families in contrast to other two solutions
- This implementation in Altera Cyclone III is 4x faster and in Actel Fusion is 2x faster than in Actel Igloo
- Area concerns
 - AES with COMB_ONLY solution in Actel Fusion and Actel Igloo utilizes 2x more tiles than AES with LFSR_LUT solution
- Power concerns
 - In both Actel devices, the two LUT-based AES solutions give comparable results, while the AES with COMB_ONLY solution is about two times more power expensive
 - Reason: S-boxes implemented in RAM are more powerefficient than those implemented in the logic area

CryptArchi 2009

Drutarovský et al.: New efficient S-box generation in logic area based 34 on a pair of LFSRs

AES implementations comparison (6/6)

- Actel Igloo family consumes
 - 2x less dynamic power
 - 150x less static power

than the most economic Altera family with a comparable size.

• It is therefore clear, that stopping the clock (e.g. in a standby mode) will reduce the power consumption to a negligible value, while maintaining the cipher internal state.

Outline

- Overview of AES cipher implementation in FPGAs
- Most common ways for implementing S-boxes
- S-box generation in logic using pair of LFSRs
- AES cipher implementation
- Comparison of size, speed and power consumption of several S-box implementations
- Comparison of size, speed and power consumption of complete AES implementations
- Conclusions

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 36 on a pair of LFSRs

Conclusion

- Unique S-box generation method has been proposed while maintaining very low power consumption, small size and high speed
- The implementation results in the Actel Igloo family show that the proposed architecture could also be used in battery-powered mobile applications, which was not the case in FPGA applications up to now

Thank you for your time and attention

CryptArchi 2009 Drutarovský et al.: New efficient S-box generation in logic area based 38 on a pair of LFSRs