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Preliminary remark

� In this talk we concentrate on power attacks on 
block ciphers

�Example: AES

�The key is guessed byte by byte ( = 8-bit subkeys)

�The 16 subkeys are guessed independently.
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DPA (Differential Power Analysis)

Pioneer work: Kocher, Jaffe, Jun (1999)

Basic idea: dpa exploits correlations between a function of a 
subkey (e.g. its Hamming weight) and the electrical current 
at time t  (2nd order dpa: 2 time instants)

� + preparatory work: moderate

� - attacking efficiency: moderate

Disadvantages / Problems:

� Usually dpa only exploits a small fraction of the available 
information.

� It is not clear how to combine information from different time 
instants.
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Template attacks (I)

Pionier work: Chari, Rao, Rohatgi (2002) 

Basic idea:

� For each plaintext byte x, each subkey k, (possibly for each 
masking value z) the measurement values (~ electrical 
current) at time instants t1<…<tm are interpreted as values that 
are are assumed by random variables It_1(x,k), ..., It_m(x,k), 
resp. of It_1(x,z,k), ..., It_m(x,z,k).

� The distributions of these random variables are unknown. 

� Profiling: Estimates for the probability densities (for all pairs
(x,k), resp. for all triplets (x,z,k)) are gained from 
measurements performed at an identical training device. 
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Template attacks (II) 

Attack: Measurement values from the target device are 
substituted into the estimated densities (→ maximum 
likelihood estimator)

Example: m=1

I(t)

decision for k1 decision for k2

probability
densities
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Template attacks (III)

Advantages / disadvantages
�+ attacking efficiency: maximal (for given 

t1<…<tm)
�- profiling workload: gigantic, especially for strong 

implementations and in case of masking
�- A successful template attack shows that the 

implementation is vulnerable but does not identify 
the weakness
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The stochastic approach (I)

� Theoretical foundations:
Schindler, Lemke, Paar (2005), Schindler (2008)

� Experimental work: 
Schindler, Lemke, Paar (2005), Gierlichs, Lemke, 
Paar (2006), Lemke-Rust, Paar (2007), Standaert, 
Koeune, Schindler (2009, simulation studies)

� Target: block ciphers
� Similarities with template attacks

�uses information from several time instants 
t1 < t2< ... < tm

� interprets measurement values as values that are 
assumed by random variables
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The stochastic approach (II)

The stochastic approach combines

� engineers‘ expertise
� Question: Which properties of the implementation / 

hardware may have significant impact on the side 
channel leakage? (qualitative assessment)

� with advanced stochastic methods
� Goal: exploit the available information in an optimal 

way
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The stochastic model (basic variant)

Target: block cipher (e.g. AES), no masking

x ∈ {0,1}p (known) part of the plaintext or ciphertext (AES: p =8)

k ∈ {0,1}s subkey (AES: s =8)

t ∈ {t1,t2,...,tm} time instant

Deterministic part
(depends on x and k)

=  ht(x;k)  +

quantifies the 
“randomness” of the 
leakage at time t

Random variable 
(depends on x and k)

It(x;k)

noise

Random variable

Rt

E(Rt) = 0
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The stochastic model (considers masking)

Target: block cipher (e.g. AES) 

x ∈ {0,1}p (known) part of the plaintext or ciphertext

z ∈ M masking value

k ∈ {0,1}s subkey

t ∈ {t1,t2,...,tm}   time instant

determinististic part
(depends on x,z,k)

=  ht(x,z;k)  +

Quantifies the 
“randomness of the 
leakage at time t

Random variable 
(depends on x,z,k)

It(x,z;k)

noise

Random variable
E(Rt) = 0

Rt
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� Note: 
� The functions h t1 (⋅⋅⋅⋅, ⋅⋅⋅⋅; ⋅⋅⋅⋅),h t2(⋅⋅⋅⋅, ⋅⋅⋅⋅; ⋅⋅⋅⋅), ... , h tm(⋅⋅⋅⋅, ⋅⋅⋅⋅; ⋅⋅⋅⋅) and
� the probability distribution of the random vector 

(Rt1 ,Rt2, ..., Rtm) („noise“)

are unknown.

� Profiling: The functions and the probability 
distributions are estimated on basis of 
measurements at an identical training device.

Remark
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� Estimate ht(x,z;k) = E (It(x,z;k)) 
independently for each triplet 
(x,z;k) ∈ {0,1}p × M × {0,1}s  

(→ template attack)
� Disadvantage: requires

2p+s|M| measurement series 
→ gigantic number of measurements (= power 
traces), especially for strong implementations 
(some reduction for chosen input attacks)

Profiling, Step 1: Naive Approach
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� Fix a subkey k ∈ {0,1}s.
� Interpret the unknown function

ht;k: ∈ {0,1}p × M × {k} → R, ht;k(x,z;k):= ht (x,z,k) 
as an element of a 2p |M|-dimensional real vector 
space F.

Much better … (central idea)

� Idea: approximate ht;k by its image h*t;k under an 
orthogonal projection on a suitably selected low-
dimensional vector subspace Fu,t;k
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Geometric visualisation

ht;k

Fu,t;k

vector subspace

ht;k*
.

orthogonal projection

k fixed
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The vector subspace Fu,t;k

The u-dimensional vector subspace

is spanned by u linear independent vectors (functions)

gj,t;k : {0,1}p × M × {k} → R                 0 ≤ j ≤ u-1

The image h*t,k is the best approximator of ht

in Fu,t;k (= closest element in Fu,t;k ).
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Theorem: For any fixed subkey k the image h*t;k of 
ht;k under the orthogonal projection meets the 
following minimum property:

For random plaintext X the mean value

E ( ( It(X,Z,k) – h’(X,Z,k) )2 )

attains ist minimum on Fu,t;k at h’=h*t;k .

Main Theorem
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Consequences

It is possible to determine the image h*t,k ∈ Fu,t;k

without knowledge of the pre-image ht;k !!

The estimation of h*t,k is completely moved to the low-
dimensional subspace Fu,t;k .

Of course, the basis g0,t;k,…,g(u-1),t;k of the vector 
subspace Fu,t;k should be selected under 
consideration of the attacked device (→ engineer‘s 
expertise)

This property reduces the number of profiling 
measurements to a small fraction. 
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Example: AES (no masking / CHES 2005) (I)

� t1,t2,….,tm: time instants after the S- box evaluation

� Reasonable candidates for the functions gj,t;k(⋅,k):
g0,t;k(x;k) = 1 
gj,t;k(x;k) = jth bit of S(x ⊕ k)        for 1 ≤ j ≤ 8 
…. 

F9,t;k = < g0,t;k ,g1,t;k ,…,g8,t;k >
interpreted as a real-valued function {0,1}8 → IR

vector subspace generated by g0,t;k ,g1,t;k ,…,g8,t;k
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Example: AES (no masking / CHES 2005) (II)

Note: dim(F9,t;k) = 9 but dim (F ) = 256

� The vector basis may be extended, e.g. to capture 
crossover effects:

g8+j,t;k(x,k) = gj,t;k(x,k) gj+1,t;k(x,k)     for 1 ≤ j ≤ 7

→ 16-dimensional vector subspace F16,t;k

no pre-information on ht
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Example AES (masked implementation)

� 8-bit bus implementation
� t∈{t1,...,tm}: instants before the S-box evaluation
� Masking:  x → (x ⊕ z) → (x ⊕ z ⊕ k) → ...

Here: dim(F9,t;k) = 9  but dim (F ) = 216

Interpreted as a real-valued function {0,1}16 → R

�Plausible candidates for the basis (depending on t)
g0,t;k(x,z,k) = 1 
gj,t;k(x,z,k) = jth bit of (x ⊕ z ⊕ k)        für 1 ≤ j ≤ 8 
….
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� Task: Let t∈ {t1, ..., tm}. For each admissible 

subkey k estimate the coefficients β*0,t;k, …,β*(u-1),t;k  

of the best approximator h*t;k of ht;k with respect to 
the basis g0,t;k,…,g(u-1),t;k

� Procedure:
1. perform N1 measurements (i.e. observe N1

encryptions) at the training device
2. calculate the least-square estimate

Profiling, Step 1: 
Approximation of the Deterministic Part

� Note: This procedure may be  performed 
separately for all t ∈ { t1, ..., tm } 



Schindler June, 26, 2009 Slide 23

Profiling, Step 2: Modelling the noise

� Assumption: The random vector (Rt1 , …, Rtm) is 
multivariate normally distributed with covariance 
matrix C

� Note: ht1,…,htm and C yield the parameter-depen-
dent densities fx,z;k(.) for (It1(x,z,k), …, Itm(x,z,k)). 

� Profiling, Step 2:
1. Perform N2 new measurements (i.e., observe N2

further encryptions at the instants t1, …, tm)
2. Determine estimates for C and fx,z;k(.)

for C and  fx,z;k(.) 

~ ~
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Attacking phase

� Conduct N3 measurements at the target device
� Decide for that subkey k that maximizes the term

)()Pr(
3

1 _

;_,_

~

∏ ∑
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=
N

j Mjz

jkjzjxjj ifzZ

(maximum likelihood estimator)
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> 99.99 %

99.96 %

99.25 %

90.17 %

68.34 %

41.43 %

Stochastic approach
(N1=1000) 

m=21 (N2=5000)

99.99 %19.67 %30

99.85 %9.70 %20

97.97 %6.04 %15

84.12 %2.74 %10

61.12 %1.31 %7

36.30 %             0.82 %5

Stochastic approach
(N1=1000) 

m=7 (N2=1000)

DPA

(HW model)

N3

Empirical probabilities 
for the correctness of the rank 1-candidate

� Reference: Schindler, Lemke, Paar (CHES 2005)
� For all instants t  the 9-dimensional vector subspace
F9;t = F9 := < 1, jth bit of S(x ⊕ k) for 1 ≤ j ≤ 8  > was used
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Comparison with template attacks 
(no masking, empirical results)

� Gierlichs, Lemke, Paar (2006):
Exemplary implementation: Even a reduction of the 
profiling measurements to 2% (relative to a template 
attack) preserved acceptable attacking efficiency.

� Standaert, Koeune, Schindler (2009)
Simulation studies: The stochastic approach 
required only 4% of the profiling measurements of 
template attacks with comparable attacking 
efficiency. 

The degree of the advantage depends on the 
concrete implementation.
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Comparison with template attacks 
(masking, empirical results)

� K. Lemke-Rust verified the applicability of the stochastic 
approach in presence of masking by many experiments.

� For masked implementations (relative to template attacks) 
the advantage in profiling efficiency is at least one order of 
magnitude larger than for implementations without masking.

� Example: AES (masked implementation)
template attacks:

profiling: 256*|M|*256 measurement series
(reduction for chosen input attacks)

stochastic approach:
profiling: 256 +1 measurement series
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Constructiveness of the stochastic approach

� If the absolute value of the coefficient  β*j,t;k is 
large, the „direction“ of the basis vector gj,t;k has 
significant impact on the subkey-dependent part 
of the leakage ht;k ( → quantitative description of 
the weakness)

m

This property can be used to support aimed 
(re-)design.
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Final Remarks

The stochastic approach has several interesting properties. It
� combines engineers‘ expertise (→ selection of a suitable 

vector subspace Fu,t;k) with stochastic methods
� can principally be applied to any masking scheme
� profiling: by order(s) of magnitude more efficient than for 

template attacks
� attacking efficiency: ≤ template attacks (depends on the 

choice of Fu,t;k) 
� identifies und quantifies properties / weaknesses that 

have significant influence on the side-channel leakage
� can be used to support aimed design / redesign
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