

The Stochastic Approach in Power Analysis – A Synthesis between Engineer's Expertise and Advanced Stochastics

Werner Schindler

Federal Office for Information Security (BSI), Bonn

Prague, June 26, 2009

Outline

dpa

Template attacks

- The stochastic approach
 - Description and mathematical background
 - Examples and experimental results
 - Comparison with other attacks
 - Advantages and useful properties

Final Remarks

Preliminary remark

In this talk we concentrate on power attacks on block ciphers

□ Example: AES

The key is guessed byte by byte (= 8-bit subkeys)
The 16 subkeys are guessed independently.

DPA (Differential Power Analysis)

Pioneer work: Kocher, Jaffe, Jun (1999)

<u>Basic idea:</u> dpa exploits correlations between a function of a subkey (e.g. its Hamming weight) and the electrical current at time t (2nd order dpa: 2 time instants)

- **-** attacking efficiency: moderate

Disadvantages / Problems:

- Usually dpa only exploits a small fraction of the available information.
- It is not clear how to combine information from different time instants.

Template attacks (I)

<u>Pionier work:</u> Chari, Rao, Rohatgi (2002) Basic idea:

- For each plaintext byte x, each subkey k, (possibly for each masking value z) the measurement values (~ electrical current) at time instants t₁<...<t_m are interpreted as values that are are assumed by random variables I_{t_1}(x,k), ..., I_{t_m}(x,k), resp. of I_{t_1}(x,z,k), ..., I_{t_m}(x,z,k).
- The distributions of these random variables are unknown.
- Profiling: Estimates for the probability densities (for all pairs (x,k), resp. for all triplets (x,z,k)) are gained from measurements performed at an identical training device.

Template attacks (II)

<u>Attack:</u> Measurement values from the target device are substituted into the estimated densities (→ maximum likelihood estimator)

Template attacks (III)

Advantages / disadvantages

- + attacking efficiency: maximal (for given t₁<...<t_m)
- profiling workload: gigantic, especially for strong implementations and in case of masking
- A successful template attack shows that the implementation is vulnerable but does not identify the weakness

The stochastic approach (I)

Theoretical foundations:

Schindler, Lemke, Paar (2005), Schindler (2008)

Experimental work:

Schindler, Lemke, Paar (2005), Gierlichs, Lemke,

Paar (2006), Lemke-Rust, Paar (2007), Standaert,

Koeune, Schindler (2009, simulation studies)

- □ <u>Target:</u> block ciphers
- □ Similarities with template attacks

uses information from several time instants

 $t_1 < t_2 < ... < t_m$

interprets measurement values as values that are assumed by random variables

Schindler

The stochastic approach (II)

The stochastic approach combines

□ engineers' expertise

Question: Which properties of the implementation / hardware may have significant impact on the side channel leakage? (qualitative assessment)

with advanced stochastic methods

Goal: exploit the available information in an optimal way

The stochastic model (basic variant)

Target: block cipher (e.g. AES), no masking

 $x \in \{0,1\}^p$ (known) part of the plaintext or ciphertext (AES: p =8) $k \in \{0,1\}^s$ subkey (AES: s =8)

 $t \in \{t_1, t_2, \dots, t_m\}$ time instant

The stochastic model (considers masking)

- $x \in \{0,1\}^p$ (known) part of the plaintext or ciphertext
- $z \in M$ masking value
- $k \in \{0,1\}^s$ subkey
- $t \in \{t_1, t_2, \dots, t_m\}$ time instant

□ Note:

The functions h_{t1} (·, ·; ·), h_{t2}(·, ·; ·), ..., h_{tm}(·, ·; ·) and
 the probability distribution of the random vector (R_{t1}, R_{t2}, ..., R_{tm}) ("noise")
 are unknown.

Profiling: The functions and the probability distributions are estimated on basis of measurements at an identical training device.

Federal Office

for Information Security

- Estimate $h_t(x,z;k) = E(I_t(x,z;k))$ *independently* for each triplet $(x,z;k) \in \{0,1\}^p \times M \times \{0,1\}^s$ (→ template attack)
- □ <u>Disadvantage:</u> requires
 2^{p+s}|M| measurement series
 → gigantic number of measurements (= power traces), especially for strong implementations (some reduction for chosen input attacks)

Much better ... (central idea)

- **T** Fix a subkey $k \in \{0,1\}^s$.
- □ Interpret the unknown function $h_{t;k} \in \{0,1\}^p \times M \times \{k\} \rightarrow R, h_{t;k}(x,z;k) \coloneqq h_t(x,z,k)$ as an element of a 2^p |M|-dimensional real vector space *F*.
- □ <u>Idea:</u> approximate $h_{t;k}$ by its image $h^*_{t;k}$ under an orthogonal projection on a suitably selected low-dimensional vector subspace $\mathcal{F}_{u,t;k}$

Geometric visualisation

The vector subspace $\mathcal{F}_{u,t;k}$

The u-dimensional vector subspace

$$F_{u,t;k} := \{h': \{0,1\}^p \times M \times \{k\} \to R \mid \sum_{j=0}^{u-1} \beta'_{j,t;k} g_{j,t;k} \quad mit \ \beta'_{j,t;k} \in R\}$$

is spanned by u linear independent vectors (functions) $g_{j,t;k}: \{0,1\}^p \times M \times \{k\} \rightarrow R \qquad 0 \leq j \leq u\text{-}1$

The image $h_{t,k}^*$ is the best approximator of h_t in $\mathcal{F}_{u,t;k}$ (= closest element in $\mathcal{F}_{u,t;k}$).

Main Theorem

Theorem: For any fixed subkey k the image h^{*}_{t;k} of h_{t;k} under the orthogonal projection meets the following minimum property:

For random plaintext X the mean value

 $E((I_t(X,Z,k) - h'(X,Z,k))^2)$

attains ist minimum on $\mathcal{F}_{u,t;k}$ at h'=h^{*}_{t;k}.

Consequences

It is possible to determine the image $h_{t,k}^* \in \mathcal{F}_{u,t;k}$ without knowledge of the pre-image $h_{t;k}$!!

The estimation of $h_{t,k}^*$ is completely moved to the lowdimensional subspace $\mathcal{F}_{u,t;k}$.

This property reduces the number of profiling measurements to a small fraction.

Of course, the basis $g_{0,t;k}, \dots, g_{(u-1),t;k}$ of the vector subspace $\mathcal{F}_{u,t;k}$ should be selected under consideration of the attacked device (\rightarrow engineer's expertise)

Schindler

Example: AES (no masking / CHES 2005) (I)

 \Box t₁,t₂,...,t_m: time instants after the S- box evaluation

■ Reasonable candidates for the functions $g_{j,t;k}(\cdot,k)$: $g_{0,t;k}(x;k) = 1$ $g_{j,t;k}(x;k) = j^{th}$ bit of $S(x \oplus k)$ for $1 \le j \le 8$ interpreted as a real-valued function $\{0,1\}^8 \rightarrow IR$ $\mathcal{F}_{9,t;k} = \langle g_{0,t;k}, g_{1,t;k}, ..., g_{8,t;k} \rangle$ vector subspace generated by $g_{0,t;k}, g_{1,t;k}, ..., g_{8,t;k}$

Example: AES (no masking / CHES 2005) (II)

Note: dim(
$$\mathcal{F}_{9,t;k}$$
) = 9 but dim (\mathcal{F}) = 256
no pre-information on h_t

The vector basis may be extended, e.g. to capture crossover effects:

$$g_{8+j,t;k}(x,k) = g_{j,t;k}(x,k) \ g_{j+1,t;k}(x,k) \quad \text{ for } 1 \le j \le 7$$

 \rightarrow 16-dimensional vector subspace $\mathcal{F}_{16,t;k}$

Example AES (masked implementation)

- **8**-bit bus implementation
- □ t∈ {t₁,...,t_m}: instants before the S-box evaluation □ Masking: $x \rightarrow (x \oplus z) \rightarrow (x \oplus z \oplus k) \rightarrow ...$

■ Plausible candidates for the basis (depending on t) $g_{0,t;k}(x,z,k) = 1$ $g_{j,t;k}(x,z,k) = j^{th}$ bit of $(x \oplus z \oplus k)$ für $1 \le j \le 8$ …… \ Interpreted as a real-valued function $\{0,1\}^{16} \rightarrow R$

Here: dim(
$$\mathcal{F}_{9,t;k}$$
) = 9 but dim (\mathcal{F}) = 2¹⁶

Schindler

Federal Office for Information Security Profiling, Step 1: Approximation of the Deterministic Part

- Task: Let t∈ {t₁, ..., t_m}. For each admissible subkey k estimate the coefficients $\beta^*_{0,t;k}$, ..., $\beta^*_{(u-1),t;k}$ of the best approximator $h^*_{t;k}$ of $h_{t;k}$ with respect to the basis $g_{0,t;k}$,..., $g_{(u-1),t;k}$
- **Procedure**:
 - 1. perform N_1 measurements (i.e. observe N_1 encryptions) at the training device
 - 2. calculate the least-square estimate
- <u>Note</u>: This procedure may be performed separately for all $t \in \{t_1, ..., t_m\}$

Profiling, Step 2: Modelling the noise

- Assumption: The random vector (R_{t1}, ..., R_{tm}) is multivariate normally distributed with covariance matrix C
- □ Note: $h_{t1},...,h_{tm}$ and C yield the parameter-dependent densities $f_{x,z;k}(\cdot)$ for $(I_{t1}(x,z,k), ..., I_{tm}(x,z,k))$.
- □ Profiling, Step 2:
 - 1. Perform N_2 new measurements (i.e., observe N_2 further encryptions at the instants $t_1, ..., t_m$)
 - 2. Determine estimates for \tilde{C} and $\tilde{f}_{x,z;k}(\cdot)$ for C and $f_{x,z;k}(\cdot)$

Attacking phase

- Conduct N₃ measurements at the target device
- Decide for that subkey k that maximizes the term

$$\prod_{j=1}^{N_3} \sum_{z_j \in M} \Pr(Z_j = z_j) \tilde{f} x_j, z_j; k(i_j)$$

(maximum likelihood estimator)

Empirical probabilities for the correctness of the rank 1-candidate

■ <u>Reference</u>: Schindler, Lemke, Paar (CHES 2005) ■ For all instants t the 9-dimensional vector subspace $\mathcal{F}_{9;t} = \mathcal{F}_9 := < 1$, jth bit of S(x \oplus k) for 1 ≤ j ≤ 8 > was used

N ₃	DPA (HW model)	Stochastic approach (N_1 =1000) m=7 (N_2 =1000)	Stochastic approach (N_1 =1000) m=21 (N_2 =5000)
5	0.82 %	36.30 %	41.43 %
7	1.31 %	61.12 %	68.34 %
10	2.74 %	84.12 %	90.17 %
15	6.04 %	97.97 %	99.25 %
20	9.70 %	99.85 %	99.96 %
30	19.67 %	99.99 %	> 99.99 %

for Information Security Comparison with template attacks (no masking, empirical results)

Gierlichs, Lemke, Paar (2006):

Exemplary implementation: Even a reduction of the profiling measurements to 2% (relative to a template attack) preserved acceptable attacking efficiency.

□ Standaert, Koeune, Schindler (2009) Simulation studies: The stochastic approach required only 4% of the profiling measurements of template attacks with comparable attacking efficiency.

The degree of the advantage depends on the concrete implementation.

for Information Security Comparison with template attacks (masking, empirical results)

- **K.** Lemke-Rust verified the applicability of the stochastic approach in presence of masking by many experiments.
- For masked implementations (relative to template attacks) the advantage in profiling efficiency is at least one order of magnitude larger than for implementations without masking.
- Example: AES (masked implementation)

template attacks:

profiling: 256* MI*256 measurement series (reduction for chosen input attacks)

stochastic approach:

profiling: 256 +1 measurement series

Constructiveness of the stochastic approach

□ If the absolute value of the coefficient $\beta^*_{j,t;k}$ is large, the "direction" of the basis vector $g_{j,t;k}$ has significant impact on the subkey-dependent part of the leakage $h_{t;k}$ (→ quantitative description of the weakness)

This property can be used to support aimed (re-)design.

Final Remarks

The stochastic approach has several interesting properties. It

- □ combines engineers' expertise (\rightarrow selection of a suitable vector subspace $\mathcal{F}_{u,t;k}$) with stochastic methods
- can principally be applied to any masking scheme
- profiling: by order(s) of magnitude more efficient than for template attacks
- attacking efficiency: \leq template attacks (depends on the choice of $\mathcal{F}_{u,t;k}$)
- identifies und quantifies properties / weaknesses that have significant influence on the side-channel leakage
- can be used to support aimed design / redesign

Contact

Federal Office for Information Security (BSI)

Werner Schindler Godesberger Allee 185-189 53175 Bonn

Tel: +49 (0)22899 - 9582-5652 Fax: +49 (0)22899 - 10-9582-5652

Werner.Schindler@bsi.bund.de www.bsi.bund.de www.bsi-fuer-buerger.de