

TRNG based on the coherent sampling

Boyan Valtchanov, Viktor Fischer, Alain Aubert

Laboratoire Hubert Curien UMR CNRS 5516, Université Jean Monnet

Outline

- Introduction
- Principle & theoretical aspects
- Simulations
- Experimental results
- Statistical evaluation results
- Conclusions
- Perspectives

Introduction

Use of TRNG in cryptography:

- generation of cryptographic keys
- nonces, IV, padding, masking etc...

Required characteristics of TRNG:

- Physical entropy source (source of randomness)
- Good statistical distribution of the random stream
- Availability of the modem
- Output bit-rate
- Easy implementation feasibility
- Robustness against attacks etc...

Theoretical aspects

> Jitter

- Coherent sampling
- > TRNG principle

Theoretical aspects (1/9)

5

> In communication systems **jitter is a monster** !

Theoretical aspects (1/9)

> For True Random Number Generation **jitter is ablessing**:

- Clock jitter is used as source of randomness
- Two aspects related to jitter exploitation:
 - entropy contents (source of entropy)
 - entropy extraction

Theoretical aspects (2/9)

Coherent sampling

Periodic clock signals with somehow related frequencies

T₁ and T₂ have a integer fractional relationship They have different frequencies *Ref: Fischer & Drutarovsky, CHES 2002*

 \succ T₂= T₁+ Δ

They have similar frequencies Ref: *Kohlebrenner & Gaj, FPGA 2004*

- > Depending on K_m and K_d we can have eighter:
 - consecutive equivalent sampling if condition (1)
 - non consecutive equivalent sampling

> $T_1 = T_{ro1}$, $T_2 = T_{ro2,}$, $\Delta = D$ > $T_2 = T_1 + \Delta$ (Δ small comparing to T_x)

> Warning:

If Δ is too small we can have transients

Low frequency Beat Signal

Equivalent Sampling

> We obtain a low frequency image of T_1 signal – a beat signal

 \succ Due to the presence of jitter, its lenght is variable but can be expressed as an integer count of T₂

10

Theoretical aspects (6/9)

If T₁ and T₂ presents only Gaussian jitter profile, we can compute the intrinsic jitter by observing the beat signal

Injected 1σ RMS jitter [ps]	Measured μ_{Tbeat}	Measured σ_{Tbeat}	Calculated 1σ RMS [ps]
10	85.83	6.37	10.21
9	85.84	5.59	8.96
8	86.02	5.00	8.02
7	85.95	4.53	7.26
6	85.91	3.81	6.11

$$\sigma = \frac{\sigma_{T_{Beat}} \Delta_{Ideal}}{\sqrt{\frac{T_{Ro_{Ideal}}}{\Delta_{Ideal}}} \sqrt{2}}$$

Ref: A coherent samplingbased method for estimating the jitter used as entropy source for True Random Number Generators, SAMPTA 2009

Theoretical aspects (8/9)

Ref: An embedded true random number generator for FPGAs Kohlebrenner & Gaj, Proceedings of the 2004 ACM/SIGDA 12th symposium on Field programmable gate arrays

> Advantages:

- no cost for PLL

Disadvantages

- device dependent (manual place & route)
- output bitrate (~500Kbits/sec)
- bias in the output stream

international

Theoretical aspects (9/9)

> We propose to extract 4 random bits per T_{beat} period if T_1 and T_2 are independent

> Mutual sampling

Simulation Results

Ref: Modeling and observing the jitter in ring oscillators implemented in FPGAs, DDECS'2008

Each element of the ring oscillatos is subject to **local** and **global** phenomena that affects its timming delay.

The simulation permits to model the behavior of the entropy extractors for various jitter types (Gaussian & deterministic) and sizes

- > We use VHDL to simulate the coherent sampling and the TRNG
- The jitter files are generated in Matlab
- Generated values determines the clock frequency

Simulation (3/6)

130

125

120 115

TBeat1 and TBeat2 lengths

 T_1 = 9,000 ns T_2 =9,085ns Δ=85ps

- \succ Case 1: T₁ and T₂ are independent Gaussian sources
- \succ The obtained beat signals T_{beat1} T_{beat2} are different

Simulation (4/6)

> no correlation is observed

> XY plot: if the two values were correlated, the plot will have a form of a uniformly filled circle

- > **Case 2:** T_1 and T_2 have each a Gaussian behavior $\sigma_1 = \sigma_2 = 30$ ps
- Global Deteministic component 3Khz sine is added
- > T₁ =9,100ns T₂=9,160ns, Δ=60ps

Simulation (6/6)

We observe strong dependency

Practical Results

Practical Results (2/11)

>Implementation of a ring
oscillator in Xilinx

Delay element is a LUT

Implementation of a ring oscillator in Actel

Delay element is an AND2 gate

Case 1:

Ring oscillator based implementation in the Xilinx Spartan 3 FPGA

Strong dependecy is observed T_{Beat1} and T_{Beat2} differ but follow the same tendency!

> We see that T_{Beat1} and T_{Beat2} are correlated but individually they are good candidates for randomness extraction

> We see that T_{Beat1} and T_{Beat2} are (less) correlated but individually they are good candidates for randomness extraction

>7 element ring oscillator Δ =70ps T_{Beat}=900Khz

Case 3:

- PLL based implementation in Actel FPGA
- RO settings: 10 elements m=0 n=5
- PLL settings: M=127 D=128

≻ **Δ=90ps**

- No correlation is observed
- Mutual sampling may be achieved
- Note: standard deviations differs, this is due to the presence of deterministic jitter in the RO obtained signal

Practical Results (10/11)

TBeat1 and TBeat2 lengths 10. length n [#]

Case 4:

DFS based implementation

in Xilinx Spartan 3

- > M₁=12 D₁=11 M₂=13 D₂=12 Δ =60ps
- 7 element ring oscillator (~ 9100ns)

Practical Results (11/11)

- Correlation is detected
- > No mutual sampling is possible

Statistical Evaluation (1/2)

All the proposed implementation showed small bias and passes the FIPS 140-2 tests

> NIST sts2.0b software was used for statistical evaluation (Unix)

Mutual sampling of ring oscillators failed the NIST tests both in Actel and Xilinx

Xilinx DFS implementation Failed the NIST tests

> NIST strategy: 200 sequences of 1MBit where evaluated (α =0.01)

Statistical Evaluation (2/2)

RES	ULTS	FOR	THE	UNIF	ORMI	тү с)F P-	VAL	UES J	IND THE PR	OPORTION OF	PASSING SEQUENCES
	gene	rato	: is	<./E	:>							
CI	. C2	СЗ	C4	C5	C6	С7	C8	С9	C10	P-VALUE	PROPORTION	STATISTICAL TEST
24	20	13	25	28	25	13	18	18	16	0.181557	0.9800	Frequency
19	18	25	27	20	20	18	21	15	17	0.749884	0.9900	BlockFrequency
28	3 20	15	16	24	16	26	20	22	13	0.255705	0.9850	CumulativeSums
17	12	23	16	26	16	30	19	22	19	0.171867	0.9900	Runs
19	21	26	9	21	21	28	17	16	22	0.176657	0.9850	LongestRun
23	24	24	15	16	17	19	26	16	20	0.616305	0.9950	Rank
4	11	18	18	15	29	23	25	31	26	0.000191	1.0000	FFT
24	22	20	14	17	18	17	21	26	21	0.759756	0.9750	NonOverlappingTemplate
15	5 27	23	14	17	22	26	20	17	19	0.446556	0.9950	OverlappingTemplate
21	21	20	23	19	22	17	16	19	22	0.985788	0.9950	Universal
32	24	33	18	22	16	19	15	13	8	0.000757	0.9700	ApproximateEntropy
18	3 11	12	14	10	8	14	14	16	10	0.593823	0.9764	RandomExcursions
ε	3 12	15	10	14	11	10	15	16	16	0.680410	0.9921	RandomExcursionsVarian
27	16	23	19	27	26	20	13	15	14	0.141256	0.9900	Serial
20	22	22	18	22	15	15	23	23	20	0.897763	0.9900	LinearComplexity
_												

The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 0.968893 for a sample size = 200 binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately 0.963513 for a sample size = 127 binary sequences.

Actel PLL implementation 2MBits/second Mutual sampling 4 random bits / T_{Beat} period

RESULTS FOR THE UNIFORMITY OF P-VALUES AND THE PROPORTION OF PASSING SEQUENCES _____ generator is $\langle ./L \rangle$ _____ C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST 9 13 8 14 8 11 11 13 0.514124 0.9900 Frequency 21 15 13 10 7 7 8 6 9 4 0.006196 0.9800 BlockFrequency 10 0 9 13 17 9 10 9 8 0.514124 0.9900 CumulativeSums 4 4 13 12 10 14 10 0.262249 1.0000 Runs 13 12 11 7 8 9 4 12 6 12 0.066882 0.9700 LongestRun 11 10 17 4 6 12 14 7 11 8 0.137282 0.9700 Rank 13 8 14 14 5 14 17 6 0.004981 1.0000 FFT 10 11 11 12 9 9 10 9 0.946308 1.0000 NonOverlappingTemplate 13 12 5 12 11 7 8 6 7 0.062821 0.9600 OverlappingTemplate 10 8 8 11 9 17 13 7 0.474986 0.9900 Universal 7 15 13 13 6 5 9 5 0.051942 0.9600 ApproximateEntropy 5 6 13 6 10 5 6 0.170294 1.0000 RandomExcursions 8 9 5 8 10 6 4 0.551026 0.9846 RandomExcursionsVariant 4 11 18 14 11 5 8 9 8 8 8 0.191687 1.0000 Serial 11 11 15 8 8 16 5 7 11 8 0.275709 0.9800 LinearComplexitv The minimum pass rate for each statistical test with the exception of the random excursion (variant) test is approximately = 0.960150 for a sample size = 100 binary sequences.

The minimum pass rate for the random excursion (variant) test is approximately 0.952976 for a sample size = 65 binary sequences.

Xilinx Ring Oscillator implementation
1.38MBits/second
No mutual sampling
2 random bits / T_{Beat} period

Conclusions

- Extension of TRNG principle was proposed
- No bias, no postprocessing!
- Extracting 2 random bits per T_{Beat} period was validated
- Extracting 4 random bits per T_{Beat} period was validated in special case
- Actel 'push button' implementation of TRNG was proposed
- Strong dependency of ring oscillator was observed

Perspectives

> Use an external VCO in order to avoid dependencies and be able to perform multi Δ measurements

Implement in Virtex 5 FPGA (better DFS resolution) in order to validate the 4bits extraction (mutual sampling) in Xilinx

- Serial cascading of DFS
- Mathematical modeling for the global deterministic component

