Random number generation: a potential target of electromagnetic emanation analysis ?

Pierre BAYON - Lilian BOSSUET - Alain AUBERT - Viktor FISCHER

Laboratoire Hubert Curien, UMR 5516 CNRS Jean Monnet University, Member of University of Lyon Saint-Etienne, France

pierre.bayon@univ-st-etienne.fr

17 June 2011

Outline

Introduction

- TRNGs General Structure
- EMA on TRNG: State of the Art

Case Study

- TRNG Principle
- Implementation and Floorplan
- EMA Test Bench
- Setup of the Bench

Tools Used

- Frequential Analysis
- Cross-Correlation Cartography

Results

Conclusion

Outline

Introduction

- TRNGs General StructureEMA on TRNG: State of the Art
- 2 C

 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench
- 3 Tools Us
 - Frequential Analysis
 - Cross-Correlation Cartography
 - Results

Conclusion

ANR

This work has been done within the ANR EMAISeCi project (http://www.lirmm.fr/emaiseci/). This presentation is an overview of my recent work on EMA on TRNG.

TRNGs General Structure

Source of randomness and entropy extractor:

- Should give as much entropy per bit as possible.
- Should enable sufficient bit-rate.
- Shouldn't be manipulable (robustness).
- Algorithmic post-processing:
 - Enhances statistical properties of the output without reducing the entropy.
- Embedded tests:
 - Detect immediately the generator's total failure.
 - Evaluate the quality of the source of randomness in real time.

ANR

How to Attack a TRNG

State of the Art

- No paper dealing with passive or active EM attacks on TRNG to date.
- Some tests regarding the sensibility of the TRNG to different parameters such temperature, core voltage, ..., can be viewed as attacks.
- Only one dealing with periodic signal injection on the power line rises: [MM09] - The Frequency Injection Attack on Ring-Oscillator-Based True Random Number Generators.

- EMA on cryptographic systems is something well-tried.
- It should not be a problem then to apply these methodologies to TRNG EMA.
 - FPGA implementation of a block cipher is a complex structure (more than 1000 logic cells and registers).
 - So, area of interest gives a relatively high electromagnetic emanation compared to the surrounding blocks.
- But ...
 - TRNG area is much smaller (usually not more than 300 logic cells and 100 registers).
 - So, area of interest gives an electromagnetic emanation that is lower than that of the cipher for example.
 - TRNG are to be embedded in a cryptographic system, so with a surrounding using much more logic cells.

How to Attack a TRNG

Outline

Case Study

- Frequential Analysis
- Cross-Correlation Cartography

ANR

TRNG principle - [WT08] Wold and Tan TRNG

Principle

- Improvement of an existing TRNG ([SMS07] A Provably Secure True Random Number Generator with Built-in Tolerance to Active Attacks)
- Use the RO-generated clock jitter as a source of randomness.

Implementation

- Study performed on an Actel Fusion M7AFS600.
- Two versions of topology were made, differing in TRNG position on the chip.
- The TRNGs were composed of 54 rings of 5 elements (frequency of the ring roughly equal to 200MHz).
- Other frequencies involved in the chip: 36MHz and 127MHz (PLL frequencies), 100MHz (internal RC oscillator).

Figure: TRNG testing environment.

Floorplan

Figure: On the left the first position, on the right the second one.

Principle Impl. and Floorplan Test Bench Setup

EMA Test Bench

Acquisition Setup

- Sampling used: 20G sample / s
- Number of points on each trace: 100000
- Before being acquired, each trace is averaged 16 times.

All the results presented in the following have been obtained using a Rohde&Schwarz amplifier (BW: 30MHz - 3GHz, gain 20dB, noise figure 4.5dB).

Calibration of the Measurement

The calibration of the test bench has been done thanks to a decapsulated chip.

We are able to place precisely the probe over the DIE.

Outline

- Introduction
 TRNGs General Structure
 EMA on TRNG: State of the
- Case S
 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench

Tools Used

- Frequential Analysis
- Cross-Correlation Cartography
- Results

Conclusion

ANR

Frequential Analysis

From the method proposed in ¹

- A Fast Fourier Transform of each traces is computed.
- Then to obtain a cartography at a certain frequency, one just needs to take the module of the FFTs at this frequency.

¹[SGM09] Electromagnetic Raditions of FPGAs: High Spatial Resolution Certography and Attack on a Cryptographic Module, L. Sauvage, S. Guilley and Y. Mathieu, ACM Transactions on Reconfigurable Technology and Systems 2009.

Cross-Correlation Function (NXC Function)

From the method proposed in ²

Let's take two temporal measurements A and B.

Cross-Correlation Function

$$\Gamma_{A,B}(d) = \frac{cov(A,B_{-d})}{\sigma_{A}.\sigma_{B}} = \frac{\sum\limits_{n=d}^{d+inf(n_{A}.n_{B})-1} (A(n) - \overline{A(n)}) \cdot (B(n-d) - \overline{B(n)})}{\sqrt{\sum\limits_{n=0}^{n_{A}} (A(n) - \overline{A(n)})^{2}} \sqrt{\sum\limits_{n=0}^{n_{B}} (B(n-d) - \overline{B(n)})^{2}}}$$

With:

- σ_A and σ_B the standard deviations of the observations A and B.
- n_A and n_B the number of temporal samples of A and B.
- $\overline{A(n)}$ and $\overline{B(n)}$ the mean values of A and B.

Basically xcorr or xcov functions in Matlab.

R²[SGF+10] Cross-Correlation Cartography, L. Sauvage, S. Guilley, F. Flament, J-

Example

Figure: From top to bottom: Measurement A, Measurement B, xcov on A and B, xcorr on A and B

NXC Cartography

What we need in order to obtain a map

- A fixed reference observation point (Xref, Yref).
- Scanning over all the (X,Y) positions...
- ... and evaluate the maximum of the NXC((Xref,Yref),(X,Y)).

Then we will have to compute a map for each position as reference point. If we have N_P points, we will get at the end N_P maps.

NXC Cartography

- Analyzing N_P maps, especially if N_P is big, is very time consuming
- Maps where observations points are close to each others will look alike (or be correlated).
- So, maps could be classified in different groups using a bidimensional correlation function.

Bidimensional Correlation Function

$$\Gamma^{2D}_{M,N}(p,q) = rac{cov(M,N_{-p,-q})}{\sigma_M.\sigma_N}$$

With:

- M, N two maps.
- σ_M and σ_N , their standard deviation.

Outline

- Case S
 - TRNG Principl
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench
- 3 Tools Us
 - Frequential Analysis
 - Cross-Correlation Cartography

Conclusion

ANR

Reference for the Orientation of the Probe

To deal with the different orientations of the probe we have set the reference for the angle as:

Floorplan

Figure: On the left the first position, on the right the second one.

Spotting the PLL using Frequential Analysis

Orientation of the probe O°

Orientation of the probe 180°

Orientation of the probe 90°

Orientation of the probe 270°

Figure: Frequential cartography at 127MHz for different orientations of the

Spotting the PLL using Cross Correlation

One of the Cross Correlation Map for the second position

Figure: One of the Cross Correlation map obtained for position 1 on the left, and position 2 on the right with probe at 90° .

Spotting the Ring using Frequential Analysis

Figure: Frequential cartography between 195MHz and 197MHz for position 1 on left and position 2 on right.

Outline

- Case St
 - TRNG Principle
 - Implementation and Floorplan
 - EMA Test Bench
 - Setup of the Bench
- 3 Tools Us
 - Frequential Analysis
 - Cross-Correlation Cartography
 - Results

ANR

Conclusion

- Using frequential analysis and knowing what was inside the chip we were able to locate:
 - The position of the PLL and the flip-flop that use given frequencies.
 - The position of the ring oscillators for the two different positions.
- Using Cross Correlation we were able to locate the PLL and the flip-flop.

Future Work

- Obtain a more accurate cartography.
- Active EM attacks on TRNG.
- Usage of EM analysis to characterize ring oscillators (locking, ...).

Thank you, any questions ?

