ASYNCHRONOUS SELF-TIMED RINGS FOR RANDOMNESS GENERATION

LABORATOIRE Hubert LICAS • 5516 • ST-ETIENNE

Abdelkarim CHERKAOUI (LaHC) Viktor FISCHER (LaHC) Alain AUBERT (LaHC) Laurent FESQUET (TIMA)

Jean Monnet University . St-Etienne FRANCE

Introduction

- Performances of True Random Number Generators depend essentially on the quality of the entropy source
- Many TRNG principles rely on extracting jitter from ring oscillators
- Classic inverter based ring oscillators are easy to implement, but suffer from a low robustness to process and voltage variability

Improving RO robustness => Improving TRNG robustness

 Asynchronous self-timed rings have been studied on ASIC targets and show some interesting properties

Outline

Asynchronous Self-timed Rings

- Behavioral model
- Time Accurate model
- Our work on Asynchronous Self-timed Rings
 - ASTR on Altera Cyclone III target
 - Robustness to process and voltage variability
 - Jitter measurements
 - Influence of surrounding logic
- Analysis
- Conclusion

Asynchronous Design

- Principlelocal synchronization between elements
exchanging data
 - **Execution** bi-directionnal communication channels and adapted communication protocol

Asynchronous Design

- Principle local synchronization between elements exchanging data
 - Execution
 bi-directionnal communication channels
 and adapted communication protocol

Why Consider Asynchronous circuits ?

- Low power consumption
- High operating speed
- Less emissions of electro-magnetic noise
- Robustness toward PVT variationsImproved modularity
- No clock distribution and clock skew problems

Asynchronous Self-timed Rings (ASTR)

□ Ring structure : closed loop of an asynchronous micropipeline

□ Basic stage cell : Muller gate + inverter

(a) Stage structure

(b) Stage truth table

ASTR History

[1] J. C. Ebergen, S. Fairbanks, and I. E. Sutherland, **"Predicting performance of micropipelines using charlie diagrams"**, in *Proceedings of the Fourth International Symposium on Advanced Research in Asynchronous Circuits and Systems, ASYNC'98, San Diego, CA, USA, Mar./Apr. 1998, pp. 238–246.*

- [2] A. Winstanley and M. R. Greenstreet, **"Temporal properties of self-timed rings"**, in Proceedings of the 11th Advanced Research Working Conference on Correct Hardware Design and Verification Methods, CHARM'01. London, UK: Springer-Verlag, 2001, pp. 140–154.
- [3] S. Fairbanks and S. Moore, **"Analog micropipeline rings for high precision timing**", in Proceedings on the 10th International Symposium on Asynchronous Circuits and Systems, ASYNC'04, Apr. 2004, pp. 41–50.
- [4] J. Hamon, L. Fesquet, B. Miscopein, and M. Renaudin, **«High-level time**accurate model for the design of self-timed ring oscillators», in Proceedings on the 14th International Symposium on Asynchronous Circuits and Systems, ASYNC'08, Newcastle, United Kingdom, April 2008.

- Data representation
 - Bubble Output's stage is equal to its input
 - **Token** Output's stage is different from its input
- Propagation Rule
 - A token propagates from left to right to the next stage if it contains a bubble
 - A bubble propagates from right to left to the previous stage if it contains a token

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - **Bubble** Output's stage is equal to its input
 - **Token** Output's stage is different from its input

- Data representation
 - Bubble Output's stage is equal to its input
 - **Token** Output's stage is different from its input
- Propagation Rule
 - A token propagates from left to right to the next stage if it contains a bubble
 - A bubble propagates from right to left to the previous stage if it contains a token

Steady Regime

□ Steady Regime shows 2 oscillation modes

Evenly-spaced	Tokens evenly spread all around the ring and propagate with a constant spacing
Burst	Tokens get together to form a cluster that propagates around the ring

□ Example : 32-stage ring

□ Is it possible to predict the oscillation mode ? How ?

Steady Regime

Steady Regime

Steady Regime shows 2 oscillation modes

Evenly-spaced	Tokens evenly spread all around the ring and propagate with a constant spacing
Burst	Tokens get together to form a cluster that propagates around the ring

□ Example : 32-stage ring

□ Is it possible to predict the oscillation mode ? How ?

(b) Stage truth table

- Stage delay is influenced by two analog phenomena
 ^[2]
 - Charlie EffectThe closer are the input's events, the longer is
the stage propagation delayDrafting EffectThe shorter is the elapsed time between two
successive outputs commutation the shorter will
be the stage propagation delay

□ Ring stage chronogram

Analytical Charlie model

charlie(s, y) =
$$D_{mean} + \sqrt{D_{charlie}^2 + (s - s_{min})^2} - B^{-\frac{y}{A}}$$

Static delays - Mean forward and reverse delay

Analytical Charlie model

charlie(s, y) =
$$D_{mean} + \sqrt{D_{charlie}^2 + (s - s_{min})^2} - B^{-\frac{y}{A}}$$

The Charlie 3D Diagram

The Charlie 3D Diagram

(a) charlie(s) for constant y

The Charlie 3D Diagram

(b) charlie(y) for constant s

Time Accurate Model : Analysis

12

Considering the token/bubble abstraction

Charlie Effect two tokens evolving closely will push away from each other

Drafting Effect

a token crossing a stage will accelerate next token crossing the stage

Considering propagation modes

Charlie Effectfavorises evenly-spaced oscillating modeDrafting Effectfavorises burst oscillating mode

Avoiding the Burst

- Oscillation mode and frequency depend mainly on
 - Number of tokens and bubbles in the ring
 - Charlie and drafting parameters
 - Classic timing parameters (static forward and reverse delays)
- Evenly-spaced volume and Burst volume are evaluated in a 4 dimensionnal space formed by the stage parameters

□ Sufficient condition to guarantee the evenly-spaced mode

$$\frac{D_{ff}}{D_{rr}} = \frac{N_T}{N_B}$$

Avoiding the Burst

Avoiding the Burst

- Oscillation mode and frequency depend mainly on
 - Number of tokens and bubbles in the ring
 - Charlie and drafting parameters
 - Classic timing parameters (static forward and reverse delays)
- Evenly-spaced volume and Burst volume are evaluated in a 4 dimensionnal space formed by the stage parameters

□ Sufficient condition to guarantee the evenly-spaced mode

$$\frac{D_{ff}}{D_{rr}} = \frac{N_T}{N_B}$$

Functionnal Comparison : IRO/ASTR

	IRO	ASTR
Stage structure	Inverter	Muller gate + Inverter
Behavior	One event propagating throughout the ring	Several events propagating simultaneously
Oscillation modes	Evenly-spaced	Evenly-spaced + Burst
Frequency	Depends on number of stages and stage delays	More complex dependency
Analog Effects	Drafting effect	Drafting effect + Charlie effect

ASTR on Altera Cyclone III target (1)

An important evenly-spaced volume

Short commutation time compared to propagation delay

low Drafting effect

Ring stage implemented inside one LUT

$$D_{rr} = D_{ff}$$

□ A simple design rule to insure the evenly-spaced mode

$$N_T = N_B$$

ASTR on Altera Cyclone III target (2)

In the steady evenly-spaced regime the ring oscillates between two states

Events happen with null separation times

$$\square T_{osc} = 4 * (D_{LUT} + D_{charlie})$$

Robustness to Voltage Variations (1)

Normalized frequency Vs power supply voltage

Robustness to Voltage Variations (2)

Normalized frequency range Vs power supply voltage

$$\Delta F = \frac{F_{\max} - F_{\min}}{F_{nom}}$$

	Nominal frequency	Normalized frequency
	(Mhz)	range
IRO 5C	375.82	49.15 %
IRO 25C	73.49	47.72 %
IRO 80C	22.84	47.07 %
ASTR 4C	653.47	49.95 %
ASTR 24C	432.54	44.20 %
ASTR 48C	407.90	38.72 %
ASTR 64C	368.58	38.87 %
ASTR 96C	320.48	37.38 %

Robustness to Process Variability

19

 Preliminary tests using 5 Altera Cyclone III boards : frequency dispersion

	Board 1	Board 2	Board 3	Board 4	Board 5	Relative standard deviation
IRO 3C	654.42	646.84	641.56	645.60	642.12	0.79 %
IRO 5C	305.72	306.44	302.54	304.87	302.20	0.62 %
ASTR 4C	669.05	660.06	658.60	659.90	655.62	0.76 %
ASTR 96C	328.16	328.54	327.55	328.47	327.46	0.15 %

Jitter Shapes

Without deterministic noise and surrounding logic, both oscillators exhibit gaussian jitter

20

IRO 3C

Jitter Shapes

Without deterministic noise and surrounding logic, both oscillators exhibit gaussian jitter

20

ASTR 4C

Jitter Shapes

Without deterministic noise and surrounding logic, both oscillators exhibit gaussian jitter

20

ASTR 96C

Jitter Measurements

- Jitter accumulation in IRO has been well studied : period standard deviation follows a square root law with the number of elements
- Period jitter seems to be constant with respect to the number of elements for ASTR

Period relative standard deviation vs number of elements (ASTR)

Jitter Measurements

22

 A simple experiment : an IRO (5 stages ~ 300 Mhz) and an ASTR (96 stages ~ 320 Mhz) running simultaneously in an Altera Cyclone III board

22

 A simple experiment : an IRO (5 stages ~ 300 Mhz) and an ASTR (96 stages ~ 320 Mhz) running simultaneously in an Altera Cyclone III board

- 22
- A simple experiment : an IRO (5 stages ~ 300 Mhz) and an ASTR (96 stages ~ 320 Mhz) running simultaneously in an Altera Cyclone III board

22

 A simple experiment : an IRO (5 stages ~ 300 Mhz) and an ASTR (96 stages ~ 320 Mhz) running simultaneously in an Altera Cyclone III board

- 23
- Limitations of constant stage parameters model
 - TBTB ... TB configuration : frequency independent from number of stages

$$T_{osc} = 4 * (D_{LUT} + D_{charlie})$$

- **Robustness to voltage variations : influence of stage length**
- Well suited for ASIC but placement/routing matters in FPGA
- □ Extending the existing model to more restrictive targets
 - Consider different timing parameters for each stage : take into account routing
 - Low drafting effect

- 23
- □ Limitations of constant stage parameters model
 - TBTB ... TB configuration : frequency independent from number of stages

- 23
- Limitations of constant stage parameters model
 - TBTB ... TB configuration : frequency independent from number of stages

$$T_{osc} = 4 * (D_{LUT} + D_{charlie})$$

- **Robustness to voltage variations : influence of stage length**
- Well suited for ASIC but placement/routing matters in FPGA
- □ Extending the existing model to more restrictive targets
 - Consider different timing parameters for each stage : take into account routing
 - Low drafting effect

- Limitations of constant stage parameters model
 - TBTB ... TB configuration : frequency independent from number of stages

$$T_{osc} = 4 * (D_{LUT} + D_{charlie})$$

- **D** Robustness to voltage variations : influence of stage length
- Well suited for ASIC but placement/routing matters in FPGA
- □ Extending the existing model to more restrictive targets
 - Consider different timing parameters for each stage : take into account routing
 - Low drafting effect

charlie_i(s) =
$$Ds_i + \sqrt{D_{charlie}^2 + s^2}$$

24

□ Oscillation period for a 4-stage ring

$$T_{osc} = \sum_{i=1}^{4} Ds_i + 2\sqrt{D_{charlie}^2 + (\frac{Ds_4 - Ds_2}{2})^2} + 2\sqrt{D_{charlie}^2 + (\frac{Ds_3 - Ds_1}{2})^2}$$

□ General oscillation period expression for an n-stage ring

$$T_{osc} = \frac{4}{n} \sum_{i=1}^{n} Ds_i + f(D_{charlie}, Ds_{i,i \in \{1,...,n\}})$$

24

Oscillation period for a 4-stage ring

$$T_{osc} = \sum_{i=1}^{4} Ds_i + 2\sqrt{D_{charlie}^2 + (\frac{Ds_4 - Ds_2}{2})^2} + 2\sqrt{D_{charlie}^2 + (\frac{Ds_3 - Ds_1}{2})^2}$$

□ General oscillation period expression for an n-stage ring

 $T_{osc} = \frac{4}{n} \sum_{i=1}^{n} Ds_i + f(D_{charlie}, Ds_{i,i \in \{1,...,n\}})$ static delays contribution $\approx 4 * D_{IUT}$ Charlie effect contribution
(non linear)

24

Oscillation period for a 4-stage ring

Robustness to PV

$$T_{osc} = \sum_{i=1}^{4} Ds_i + 2\sqrt{D_{charlie}^2 + (\frac{Ds_4 - Ds_2}{2})^2} + 2\sqrt{D_{charlie}^2 + (\frac{Ds_3 - Ds_1}{2})^2}$$

□ General oscillation period expression for an n-stage ring

 $T_{osc} = \frac{4}{n} \sum_{i=1}^{n} Ds_i + f(D_{charlie}, Ds_{i,i \in \{1,...,n\}})$ static delays contribution $\approx 4 * D_{IUT}$ Charlie effect contribution
(non linear)

24

Oscillation period for a 4-stage ring

$$T_{osc} = \sum_{i=1}^{4} Ds_i + 2\sqrt{D_{charlie}^2 + (\frac{Ds_4 - Ds_2}{2})^2} + 2\sqrt{D_{charlie}^2 + (\frac{Ds_3 - Ds_1}{2})^2}$$

□ General oscillation period expression for an n-stage ring

 $T_{osc} = \frac{4}{n} \sum_{i=1}^{n} Ds_i + f(D_{charlie}, Ds_{i,i \in \{1,...,n\}})$ static delays contribution $\approx 4 * D_{LUT}$ Charlie effect contribution
(non linear)

Robustness to PV

Robustness to VV

24

□ Oscillation period for a 4-stage ring

$$T_{osc} = \sum_{i=1}^{4} Ds_i + 2\sqrt{D_{charlie}^2 + (\frac{Ds_4 - Ds_2}{2})^2} + 2\sqrt{D_{charlie}^2 + (\frac{Ds_3 - Ds_1}{2})^2}$$

□ General oscillation period expression for an n-stage ring

$$T_{osc} = \frac{4}{n} \sum_{i=1}^{n} Ds_i + f(D_{charlie}, Ds_{i,i \in \{1,...,n\}})$$

Derivative with respect to voltage for a 4-stage ring

$$\frac{\partial T_{osc}}{\partial V} = \sum_{i=1}^{4} \frac{\partial Ds_i}{\partial V} + \frac{Ds_3 - Ds_1}{2\sqrt{D_{charlie}^2 + (\frac{Ds_3 - Ds_1}{2})^2}} \left(\frac{\partial Ds_3}{\partial V} - \frac{\partial Ds_1}{\partial V}\right) + \frac{Ds_4 - Ds_2}{2\sqrt{D_{charlie}^2 + (\frac{Ds_4 - Ds_2}{2})^2}} \left(\frac{\partial Ds_4}{\partial V} - \frac{\partial Ds_2}{\partial V}\right)$$

Conclusion

-	

	IRO	ASTR
Behavior	One event evolving in the ring	Several events evolving in the ring simultaneously
Frequency	Linear dependency with number of elements and stage delays	Depends on many parameters
Implementation	Easy	Needs placement
Size	Small (5-stage ~ 300 Mhz)	Medium (96-stage ~ 300 Mhz)
Power Consumption	_	Probably higher than IRO
Robustness to process variability	Increases with number of elements	Increases with number of elements while maintaining high frequency
Robustness to voltage variations	Low	Increases with number of stages
Period jitter	Increases with number of elements (square root accumulation)	Constant with number of elements, in theory a lower deterministic contribution

Future Works

- Regarding robustness : validate the results by doing more measurements, quantify the influence of surrounding logic
- □ Jitter characterization
- Developping the time accurate model
- Concrete implementation of some TRNG using asynchronous self-timed rings and inverter rings (Sunar generator, Wold & Tan ...) to compare robustness at a statistic level

Thank you !

charlie (*s*, *y*) =
$$D_{mean} + \sqrt{D_{charlie}^2 + (s - s_{min})^2} - B * \exp(-y/A)$$

