

BCDL Logic design with the best Trade-off Complexity/Robustness CRYPTARCHI 2011

Telecom ParisTech, Secure-IC, Thursday, June 16, 2011

BCDL Overview

BCDL implementation

Conclusions

2 Networks: T and F

2 phases

Early Evaluation

The delay between two DPL inputs is observable at the output

Technological Biais

- OR consumption \neq AND consumption
- routing $T \neq$ routing F

Logic without glitches and early propagation \Rightarrow Synchronization

The rules to be "synchronized":

- **Rule 1:** Evaluation starts after all the input signals are valid.
- **Rule 2:** Precharge starts:
 - Either after all the inputs becomes NULL (NULL is the value in precharge phase) but the outputs need to be memorized.
 - 2. Or before the first input becomes NULL which does not need any memorization.

Logic with a minimum of technological biais

- Special care at placing and routing (but the FPGA vendors give few informations)
- Use of the same logic structure for True and False (e.g. MDPL with majority gates)
- Statistical balancing
- Logic resistant to fault attacks
 - Detection capability or
 - Resilience

BCDL gate: Synchronization with Global

Global precharge PRE and "unanimity to 1"

- The global precharge replaces the "unanimity to 0".
- No need to memorization as PRE is faster than any inputs.
- U/\overline{PRE} falls to $0 \Rightarrow$ precharge is forced immediately.
- U/\overline{PRE} raises to $1 \Rightarrow$ evaluation begins after the last signal.

J-L. Danger, S. Bhasin, S. Guilley, T. Graba

Exemple of a 2-input OR gate

In-Built Robustness against Fault Attacks

- Automatically detects symmetric faults: {VALID0, VALID1} $\stackrel{\downarrow \text{ or }\uparrow}{\longrightarrow}$ {NULL0, NULL1}(1 → 0 or 0 → 1).
- "Error state" is propagated throughout the design \Rightarrow Fault resilience.

PRECHARGE	Fault detection		
1	state \neq {NULL0, NULL1}		
0	state \neq {VALID0, VALID1}		

T and F easy to implement

- Not limited to positive functions
- separable

Page 10

- 1 additionnal input (U/\overline{PRE}) + duplication(T and F)
- Area of tables = $2 \cdot 2^{n+1} < 2^{2n}$ if n > 2
- \Rightarrow S-Box area = only 4 times the size of an unprotected one.

Total Area = DFF(*4) + [SYNC(a few gates) + T + F] * n.

Special case: MUX driven by single rail signal

No needs of synchronization.

Faster than other DPLs

- Evaluation time > precharge time \Rightarrow performances \nearrow
- \blacksquare Speed / $\sim 1.25~\leftrightarrow~1.75$

Comparison with other DPLs

Logic	AND2 compl.	Speed	Robust. SCA		Robust. FA		Dosign Constr
Logic			EE	Т. В.	Fault	Det.	Design Constr.
WDDL	2	< 1/2			asym	comb	Positive gates
STTL	15	< 1/4	1		sym	seq	50% more wiring
Seclib	18	< 1/2	1	1	sym	seq	custom cell
IWDDL	14	$< 1/2 \cdot n$	1		asym	com	superpipeline
BCDL	8	> 1/2	1		sym	comb	
MDPL	10	< 1/2		1	asym	comb	MAJ gate + RNG
iMDPL	27	< 1/2	1	1	asym	comb	MAJ gate + RNG
DRSL	17	< 1/2	partly	1	sym	comb	+ RNG
MBCDL	20	> 1/2	1	1	sym	comb	+ RNG

BCDL Overview

BCDL implementation

Conclusions

Two methods

Manual: Bottom-up

- Based on primitives
- Could be Optimal in robustness, complexity, speed but
- Design constraints

Bottom-Up Approach to design AES in BCDL

Basic Steps

- Write a structural RTL code for singlerail AES using just the primitives.
- 4 primitives in AES \Rightarrow DFF, MUX, RAM, XOR.
- Duplicate all the data signals, control signals are left single rail.
- Replace the identified primitives by dual-rail BCDL compliant primitives.
- A wrapper connects single rail I/O's to dual rail data signals and ensure two phase operation of I/O's.
- The FSM should work at half its nominal frequency.

BCDL 2-input gates in FPGA

PRE is necessary for Hi-speed architectures, is the latest input of LUT

BCDL gates in ASIC

BCDL RAM and/or large gates

Synchronous RAM

Asynchronous RAM

- All global inputs converted to true and false representation.
- Signals from/to other modules converted to dual-rail/single-rail.
- Signal Phase forces '0' on all the inputs during precharge and freezes the controller to its current state.

Complexity and speed results of AES

Design	Cost	LUT type	Max. Frequency
REF	2396	LUT4	56.9 MHz
WDDL	12530	LUT4	21.3 MHz
DPL-noEE	14126	LUT4	19.7 MHz
REF-BCDL	792	LUT5/LUT6	122.7MHz
BCDL	2406	LUT5/LUT6	73.6 MHz

Page 23

Télécom ParisTe

J-L. Danger, S. Bhasin, S. Guilley, T. Graba

Mask-BCDL to mitigate the P/R constraint

BCDL Overview

BCDL implementation

Conclusions

BCDL implementation : Summary

- Automatic: Top-down, sub optimal
- Manual: Bottom-Up method Based on primitives
- Less complex and fast
- ASIC gates inspired from FPGA LUTs
- Takes advantage of ROM (as separated T and F networks)
- Less sensitive to routing congestion
- First tests show excellent robustness
- Design constraint : primitives placement in an atomic manner
- P/R improvable by Mask-BCDL

