
Alternative FPGA
Implementations of SHA-3

Finalists

CryptArchi 2011

Julien Francq, Jean-Baptiste Rigaud
julien.francq@cassidian.com, rigaud@emse.fr

CASSIDIAN (Cyber Security Center), ENSMSE

2011, June the 17th

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

What is SHA?

Cryptographic Hash Functions

play a fundamental role in modern cryptography

data integrity, message authentication, etc.

map an arbitrary finite length bitstring to a fixed length digest

should have desirable properties

preimage and collision resistance

NIST Hash Function Standard = Secure Hash Algorithm

Cryptanalysis of previous SHA families ⇒ SHA-3 Contest

2

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

SHA-3 Contest

Similar to the past AES one.

11/2/2007: kick-off.

11/31/2008: 64 candidates submitted.

12/10/2008: 51 accepted in the 1st round.

07/24/2009: 14 semifinalists.

Selection Criteria

Security, software/hardware cost (ASIC, FPGA), flexibility.

12/09/2010: 5 finalists.

BLAKE, Grøstl, JH, Keccak, Skein.

2012: and the winner is?

3

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Strategies and Challenges

2 ways of studying SHA-3 candidates hardware cost on FPGA

“Fair and comprehensive comparison” of all the candidates.

[Tillich et al., ePrint 2009], [Henzen et al., CHES 2010], [Gaj et al.,
CHES 2010]

Investigate hardware optimizations of some ones.

Challenges

BLAKE: only 1 circuit for all the digest sizes.

JH: improve throughput (TP) with FPGA Block RAMs (BRAMs).

Keccak: improve the TP with the “unfolding method”.

4

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Outline

1 Our BLAKE Implementation

2 Our JH Implementation

3 Our Keccak Implementation

4 Conclusion and Future Works

5

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Main Characteristics

BLAKE-224, 256: for 32-bit words and 32-byte digests.

BLAKE-384, 512: for 64-bit words and 64-byte digests.

Based on tweaked ChaCha

Gi Function (for BLAKE-224 and 256)

m: message block, c: constants, σr : permutations.

BLAKE-384 and 512: replace 16 by 32, 12 by 25, 8 by 16, 7 by 11.

6

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Round Function

Column Step and Diagonal Step

BLAKE-224, 256: 14 rounds per message block.

BLAKE-384, 512: 16 rounds per message block.

7

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Goals and Strategy

Litterature: 2 different circuits for BLAKE-224, 256 and for
BLAKE-384, 512.
⇒ Implementation cost issues
⇒ Goal: Merge them at a low-cost.

The Differences between the 2 BLAKEs

Words Size

Solution: implement a mutualized 64-bit datapath.
Need to convert I/O in 32 or 64 bits.
Disable the unused part of the datapath (for BLAKE-224, 256).

Initial Vectors (IVs)

Solution: all in ROM and selected with the size digest parameter.

Rotation Distances

Solution: all implemented and selected with multiplexors.

8

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Our Preliminary Results

VHDL, Xilinx Virtex-5 330T -3, ISE Tools (v13.1i)

TP (for long messages) =
Message block length× Frequency

Clock Cycles per message block

Post-synthesis results

Results given only for 4G, but 8G, 2G, 1G also implemented

Reference Size Area Freq. TP
(slices) (MHz) (Gbps)

Gaj’s team 256 1523 128 3.143
Gaj’s team 512 3064 99 3.520
Our work 256 4717 81 1.481
Our work 512 4717 81 2.592

+ 6Kb of ROM

9

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Outline

1 Our BLAKE Implementation

2 Our JH Implementation

3 Our Keccak Implementation

4 Conclusion and Future Works

10

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Round Function
E computes 42 rounds

S0 and S1 (4×4-bit Sboxes) chosen by round constants

L implements a (4,2,3) Maximum Distance Separable (MDS) code
over GF (24)

11

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Goals and Strategy

Litterature: bit-slice implementations, or only SBoxes stocked in
BRAMs.

JH looks like AES...
⇒ Why not trying to use a “TBox-like” approach for JH?

Slices can be used as distributed memory, but not efficient
⇒ Intensive use of FPGA Dual-port BRAMs

12

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

JH Round Implementation

13

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Our Preliminary Results

VHDL, Xilinx Virtex-5 70T -3, ISE Tools (v11.5i)

Post-place-and-route results

Reference Area Freq. TP TP/Area
(slices) (MHz) (Gbps) (Mbps/slice)

Gaj’s team 1104 394 5.610 5.081
Our work 1793 197 2.401 1.339

At first sight, not so good results, but DSPs not used

+ 2.448MB of Dual-Ported ROM (45% of FPGA resources)

14

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Outline

1 Our BLAKE Implementation

2 Our JH Implementation

3 Our Keccak Implementation

4 Conclusion and Future Works

15

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Hardware View of the Keccak Round (1/2)

16

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Hardware View of the Keccak Round (2/2)

17

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Unfolding Method
Unroll the Keccak core

Method already used for Shabal [Francq et al., ReConFig 2010].

Factor 1

internal state

0

internal state

1
iteration

internal state

2
iteration

internal state

48
iteration

Factor 2

internal state

0
iteration

internal state

2
iteration

internal state

48
iteration

...

Factor f

repeated f times

internal state

0

internal state

f

internal state

48
iterationiterationiteration

For Keccak: 24 rounds
18

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Benefits of Using Unfolding Method?

1 Save register loading time.
⇒ Impact on Frequency.

2 ↘ # Clock Cycles per message block

Yet, TP (for long messages) =
Message block length× Frequency

Clock Cycles per message block
.

How can we explain an hypothetical gain?

Ex.: when f = 1→ 2, # Clock Cycles per message block/2.
→ To get TP ↗, Frequency (f = 2) > Frequency (f = 1) / 2.

19

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Our Preliminary Results

VHDL, Xilinx Virtex-5 330T -3, ISE Tools (v13.1i)

Post-place-and-route results

Generic parameter for unfolding factor

Reference Area Freq. TP TP/Area
(slices) (MHz) (Gbps) (Mbps/slice)

Homsi. et al. 1257 285 6.845 5.445
Our work (f =1) 2864 228 5.472 1.910
Our work (f =2) 3458 125 6.000 1.735
Our work (f =3) TBA TBA TBA TBA
Our work (f =4) TBA TBA TBA TBA

More complex place and route step (TBA = To Be Announced)

Is f =2 the best unfolding factor?

+ 1.576Kb of ROM

20

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Outline

1 Our BLAKE Implementation

2 Our JH Implementation

3 Our Keccak Implementation

4 Conclusion and Future Works

21

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Conclusion and Future Works

Previous Hardware Implementations of SHA-3 candidates are basic
⇒ Alternatives

BLAKE: only 1 circuit for all digest sizes, dual-mode.

Improve frequency with optimized adders

JH: extensive use of BRAMs.

Implement a more regular architecture with DSPs

Keccak: unfolding method for improving TP.

Needs final results

For all: ATHENa tool.

For allowing public scrutiny, VHDL sources and ISE projects will be
available on SAPHIR2 website

Significant contribution in the benchmarking of the SHA-3 finalists

22

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

Calendar

September, 2011:

implement low-area JH and Keccak,
implement Grøstl and Skein.

Then, implement countermeasures against side-channel attacks
when HMAC is computed

February, 2012: 3rd SHA-3 Conference, CHES.

June, 2012: SHA-3 announced by NIST.

March, 2013: End of SAPHIR2 project.

23

Our BLAKE Implementation
Our JH Implementation

Our Keccak Implementation
Conclusion and Future Works

SAPHIR2 Partners

24

	Our BLAKE Implementation
	Our JH Implementation
	Our Keccak Implementation
	Conclusion and Future Works

