Alternative FPGA

Implementations of SHA-3
Finalists

CryptArchi 2011

Julien Francq, Jean-Baptiste Rigaud
julien.francq@cassidian.com, rigaud@emse.fr

CASSIDIAN (Cyber Security Center), ENSMSE

2011, June the 17th

Conclusion and Future Works

ur mplementation
- e Our JH Implementation
et SHPHIR Our Keccak Implementation
:

What is SHA?

Cryptographic Hash Functions

@ play a fundamental role in modern cryptography

o data integrity, message authentication, etc.
@ map an arbitrary finite length bitstring to a fixed length digest
@ should have desirable properties

e preimage and collision resistance

@ NIST Hash Function Standard = Secure Hash Algorithm
o Cryptanalysis of previous SHA families = SHA-3 Contest

Conclusion and Future Works

ur mplementation
r— c Our JH Implementation
et sHPHiR Our Keccak Implementation
:

SHA-3 Contest

Similar to the past AES one.

11/2/2007: kick-off.

11/31/2008: 64 candidates submitted.
12/10/2008: 51 accepted in the 1st round.
07/24/2009: 14 semifinalists.

Selection Criteria
o Security, software/hardware cost (ASIC, FPGA), flexibility.

e 12/09/2010: 5 finalists.
o BLAKE, Grgstl, JH, Keccak, Skein.

@ 2012: and the winner is?

Conclusion and Future Works

ur mplementation
- e Our JH Implementation
et SHPHIR Our Keccak Implementation
:

Strategies and Challenges

2 ways of studying SHA-3 candidates hardware cost on FPGA

@ “Fair and comprehensive comparison” of all the candidates.

o [Tillich et al., ePrint 2009], [Henzen et al., CHES 2010], [Gaj et al.,
CHES 2010]

@ Investigate hardware optimizations of some ones.

y

Challenges

o BLAKE: only 1 circuit for all the digest sizes.
@ JH: improve throughput (TP) with FPGA Block RAMs (BRAMs).
o Keccak: improve the TP with the “unfolding method”.

Conclusion and Future Works

ur mplementation
r— c Our JH Implementation
< sHPHiR Our Keccak Implementation

Outline

© Our BLAKE Implementation

@ Our JH Implementation

© Our Keccak Implementation

@ Conclusion and Future Works

ur mplementation
Our JH Implementation
. sHPHlR Our Keccak Implementation
Conclusion and Future Works
:

Main Characteristics

BLAKE-224, 256: for 32-bit words and 32-byte digests.
BLAKE-384, 512: for 64-bit words and 64-byte digests.
Based on tweaked ChaCha

G, Function (for BLAKE-224 and 256)

? -H a
3512 G571 b
; ol i :
; P . ;

@ m: message block, c: constants, o,: permutations.
o BLAKE-384 and 512: replace 16 by 32, 12 by 25, 8 by 16, 7 by 11.

ur mplementation
Our JH Implementation

- ;SHPHiR 2 Our Keccak Implementation
:

Conclusion and Future Works

Round Function

@ Column Step and Diagonal Step

Vs

7]

Vo

Viz

o BLAKE-224, 256: 14 rounds per message block.
o BLAKE-384, 512: 16 rounds per message block.

ur mplementation
r— c Our JH Implementation
et sHPHiR Our Keccak Implementation
:

Conclusion and Future Works

Goals and Strategy

o Litterature: 2 different circuits for BLAKE-224, 256 and for
BLAKE-384, 512.
= Implementation cost issues
= Goal: Merge them at a low-cost.

The Differences between the 2 BLAKEs
o Words Size

@ Solution: implement a mutualized 64-bit datapath.
o Need to convert 1/0 in 32 or 64 bits.
o Disable the unused part of the datapath (for BLAKE-224, 256).

o Initial Vectors (IVs)

o Solution: all in ROM and selected with the size digest parameter.

o Rotation Distances

@ Solution: all implemented and selected with multiplexors.

ur mplementation
Our JH Implementation
sHPHlR Our Keccak Implementation
Conclusion and Future Works
:

Our Preliminary Results

e VHDL, Xilinx Virtex-5 330T -3, ISE Tools (v13.1i)
Message block length x Frequency
Clock Cycles per message block

o TP (for long messages) =

@ Post-synthesis results

@ Results given only for 4G, but 8G, 2G, 1G also implemented

Reference || Size | Area Freq. TP
(slices) | (MHz) | (Gbps)
Gaj's team || 256 1523 128 3.143

Gaj’s team || 512 3064 99 3.520
Our work 256 4717 81 1.481
Our work || 512 4717 81 2.592

o + 6Kb of ROM

ur mplementation

- e Our JH Implementation

e SHPHIR Our Keccak Implementation
Conclusion and Future Works

:

Outline

© Our BLAKE Implementation

@ Our JH Implementation

© Our Keccak Implementation

@ Conclusion and Future Works

10

ur mplementation
Our JH Implementation

sHPHlR Our Keccak Implementation

Conclusion and Future Works

Round Function

o E computes 42 rounds

Gty Gy Gy Gy Gy

BRI R ARG

bbb b by b b b b b b, b b, by b. by

@ Sp and S; (4x4-bit Sboxes) chosen by round constants
o L implements a (4,2,3) Maximum Distance Separable (MDS) code
over GF(2%)

11

ur mplementation
= e Our JH Implementation
~ sHPHlR Our Keccak Implementation
:

Conclusion and Future Works

Goals and Strategy

o Litterature: bit-slice implementations, or only SBoxes stocked in
BRAM .

o JH looks like AES...
= Why not trying to use a “TBox-like" approach for JH?

@ Slices can be used as distributed memory, but not efficient
= Intensive use of FPGA Dual-port BRAMs

12

K errPHiR®

ur

mplementa

n

Our JH Implementation
Our Keccak Implementation
Conclusion and Future Works

JH Round Implementation

ek c A en
256 1024
1 4 4 1 1 4
C 1) I
10 10
« X 64
end | addes addrB

B ———

ok ————-
ok ———=

ROM dual 1024x8
L (30,50, L (30,513, L (31, 80), L (81, 51

=16*16*4 couples d'elements 4-hit
=1024 elements &-bit

douts douts

1 ROM (1024 *(10+8)) /8= 2304 octets
B4 ROM : 2304 * fid = 147456 octets soit 147.5 Ko

1024

13

ur mplementation
Our JH Implementation
sHPHlR Our Keccak Implementation
Conclusion and Future Works
:

Our Preliminary Results

e VHDL, Xilinx Virtex-5 70T -3, ISE Tools (v11.5i)

@ Post-place-and-route results

Reference || Area Freq. TP TP/Area
(slices) | (MHz) | (Gbps) | (Mbps/slice)

Gaj's team 1104 394 5.610 5.081

Our work 1793 197 2.401 1.339

o At first sight, not so good results, but DSPs not used
o + 2.448MB of Dual-Ported ROM (45% of FPGA resources)

14

ur mplementation

- c Our JH Implementation

e sHPHiR Our Keccak Implementation
Conclusion and Future Works

:

Outline

© Our BLAKE Implementation

@ Our JH Implementation

© Our Keccak Implementation

@ Conclusion and Future Works

15

ur mplementation
- . c Our JH Implementation
_— SHPHlR Our Keccak Implementation
:

Conclusion and Future Works

Hardware View of the Keccak Round (1/2)

Al s i s it
- [

[F=nmml =
W\m[\iuimmmwHm]
b
\

[2
N

bbb s

\
!
o\

[

b5

[

I

I\
HA

[
i%
)
F;

o
=
ot

%*SF

>

>J‘>J:>*

16

nclusion and Future Works

ur mplementation
— Our JH Implementatio
%HPHiR E Our Keccak Implementatlon
Co
:

Hardware View of the Keccak Round (2/2)

\HIHH\“’““ pfefa]u[u]uoes]x]w

IS

\\HHHHHHHIHHHH
¥

17

ur mplementation

>~ . c Our JH Implementation

~ sHPHlR Our Keccak Implementation
Conclusion and Future Works

:

Unfolding Method

@ Unroll the Keccak core
o Method already used for Shabal [Francq et al., ReConFig 2010].
e Factor 1

e e ,,
o Factor 2

Hm(emgls(ale "\ o) G " intem;lstme}w
° ...
e Factor

] | @) o]

[repeated ftimes J

o For Keccak: 24 rounds

18

ur mplementation
Our JH Implementation

e 7sHPHiR E Our Keccak Implementation
:

Conclusion and Future Works

Benefits of Using Unfolding Method?

@ Save register loading time.
= Impact on Frequency.

Q@ "\ # Clock Cycles per message block

Message block length x Frequenc
o Yet, TP (for long messages) = & & requeney.

Clock Cycles per message block
@ How can we explain an hypothetical gain?

o Ex.: when f =1 — 2, # Clock Cycles per message block/2.
— To get TP 7, Frequency (f = 2) > Frequency (f =1) / 2.

19

Conclusion and Future Works

ur mplementation

A . E Our JH Implementation

et SHPHlR Our Keccak Implementation
:

Our Preliminary Results

e VHDL, Xilinx Virtex-5 330T -3, ISE Tools (v13.1i)
@ Post-place-and-route results

o Generic parameter for unfolding factor

Reference Area Freq. TP TP/Area
(slices) | (MHz) | (Gbps) | (Mbps/slice)
Homsi. et al. 1257 285 6.845 5.445
Our work (f=1) || 2864 228 5.472 1.910
Our work (f=2) 3458 125 6.000 1.735
Our work (f=3) TBA TBA TBA TBA
Our work (f=4) TBA TBA TBA TBA

@ More complex place and route step (TBA = To Be Announced)
@ Is f=2 the best unfolding factor?
e + 1.576Kb of ROM

20

ur mplementation

- c Our JH Implementation
et sHPHiR Our Keccak Implementation
Conclusion and Future Works

Outline

© Our BLAKE Implementation

@ Our JH Implementation

© Our Keccak Implementation

@ Conclusion and Future Works

21

ur mplementation
Our JH Implementation

X sAPHIR" Our Keceak Implementation
.

Conclusion and Future Works

Conclusion and Future Works

@ Previous Hardware Implementations of SHA-3 candidates are basic
= Alternatives

@ BLAKE: only 1 circuit for all digest sizes, dual-mode.
o Improve frequency with optimized adders

JH: extensive use of BRAMs.
o Implement a more regular architecture with DSPs

Keccak: unfolding method for improving TP.
o Needs final results

For all: ATHENa tool.

For allowing public scrutiny, VHDL sources and ISE projects will be
available on SAPHIR2 website

Significant contribution in the benchmarking of the SHA-3 finalists

22

ur mplementation
= e Our JH Implementation
~ sHPHlR Our Keccak Implementation
:

Conclusion and Future Works

Calendar

September, 2011:

o implement low-area JH and Keccak,
o implement Grgstl and Skein.

Then, implement countermeasures against side-channel attacks
when HMAC is computed

February, 2012: 3rd SHA-3 Conference, CHES.
June, 2012: SHA-3 announced by NIST.
March, 2013: End of SAPHIR2 project.

23

Conclusion and Future Works

ur mplementation
= e Our JH Implementation
~ sHPHlR Our Keccak Implementation
:

SAPHIR2 Partners

Créateur de confiance E.
é/ &france telecom

W INRIA &ﬂ Sagem Sécurité

" SAFRAN Group

)

DEFENCE
& SECURITY

to”

security to be free

24

	Our BLAKE Implementation
	Our JH Implementation
	Our Keccak Implementation
	Conclusion and Future Works

