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Why Compact NTRUEncrypt Core?
• Security of lightweight devices, i.e. RFID tags, smart 

cards, NFC, Internet of things
• A lightweight cryptographic core should

– Be compact: 1K-3K GE,
– Consume low-power: 5-10 uW @ 100 KHz,
– Provide 64-80 bit security,
– Be flexible via reconfiguration,

• Lattice-based NTRU public key cryptosystem can be an 
alternative to other public key cryptosystems (such as 
RSA and ECC)
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NTRU Public Key Cryptosystem
• Based on shortest vector problem (SVP).
• Parameterized by three integers (N, p, q), where N is 

prime, gcd(p, q) = 1 and p<<q. 
• Moderate security: N=167, p=3, q=128.
• Encryption: 
• Decryption:

• h is the public key and (f,fp) pair is the private key. 

( ) ( ) ( ) ( ) mode x pr x h x m x q≡ ∗ +
( ) ( ) ( ) ( ) ( ) ( ) ( ) moda x f x e x pr x g x f x m x q≡ ∗ ≡ ∗ + ∗
( ) mod ( ) ( )b x a p f x m x≡ ≡ ∗
( ) ( ) ( ) mod ( )pc x b x f x p m x≡ ∗ ≡
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Lightweight NTRU PKC (1)
• Message and key already stored inside the 

memory (RAM, flash, OTP, etc).
• Required throughput already low (w.r.t. block 

ciphers and hash functions).
• Can we exploit these two facts and turn them 

into an advantage?
• Answer is YES:

– Just use existing memory (with additional temporary 
memory space and a few operational registers).

– Minimize core area (just computational logic, and 
word based at that)!
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Lightweight NTRU PKC (2)
• Main impact on the addressing scheme:

– Several pointers utilized to determine the start points of 
different coefficients (blinding value, public key, and private 
keys) and data (plaintext, ciphertext, temporary data).

• In the current design, pointers are given as constants:
– Possible to store the pointers in registers (or even in the RAM) 

allowing the NTRU core to work with various parameter sets 
(reconfigurable security levels).

• Optimization of the number of multiplications:
– Zero coefficient multiplications are detected by the control 

logic, and skipped (less memory accesses → improved 
throughput).
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NTRUEncrypt Operation (1)
• Operation explained by means of a (well) known 

encryption example, where N = 11:

• h, r, m given as: 
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NTRUEncrypt Operation (2)
In summary, blinding value, r, can be represented as:

r = -1,0,1,1,1,-1,0,-1,0,0,0
r = N,Z,N,N,N,N,Z,N,Z,Z,Z
r = 11 , 00 , 01 , 01 , 01 , 11 , 00 , 11 , 00 , 00 , 00

And stored inside the 8-bit wide memory as:
r = r00,r01,r02,r03, r10,r11,r12,r13, r20,r21,r22(,r23)
r = r0          ,            r1          ,            r2

Each of hi stored inside one memory location:
h = h0 , h1 , h2 , h3 , h4 , h5 , h6 , h7 , h8 , h9 , h10
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NTRUEncrypt Operation (3)
• Then how do we calculate e’s, e.g. e0

e0 = r00 h0 + r01 h10 + … + r21 h2 + r22 h1 + m0

• Normally, we need to:
– Read all r’s (11 words), all h’s (11 words), m0 (1 word),
– Write e0 (1 word)
→ 24 memory accesses in total (assuming SP memories)

• However:
– All r’s are stored in 3 words → 3 memory accesses for r’s.
– Only, 6 of r’s are non-zero → 6 memory accesses for h’s.
– Only 11 memory accesses in total → 2.18 times the regular 

throughput.
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NTRUEncrypt Data Flow (1)
• Encryption starts: Initializations

– coef_ptr ← r_ptr
– data_ptr ← h_ptr
– read_ptr ← ptxt_ptr
– write_ptr ← ctxt_ptr

• Read r0
– ram_adr = coef_ptr, ram_ren = 1
– coef_ptr ← coef_ptr + 1

• Backup r01,r02,r03 in coef_reg, r00≠0 → Read h0
– ram_adr = data_ptr, ram_ren = 1
– data_ptr ← data_ptr – 1
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NTRUEncrypt Data Flow (2)
• Accumulate r00 h0, r01=0 → r02≠0 → Read h9

– ram_adr = data_ptr – 1, ram_ren = 1
– data_ptr ← data_ptr – 2
– acc ← r00 h0 = -h0

• Accumulate r02 h9, r03≠0 → Read h8
– ram_adr = data_ptr, ram_ren = 1
– data_ptr ← data_ptr – 1
– acc ← acc + r02 h9 = -h0+h9

• Accumulate r03 h8, Read r1
– ram_adr = coef_ptr, ram_ren = 1
– coef_ptr ← coef_ptr + 1
– acc ← acc + r03 h8 = -h0+h9+h8
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NTRUEncrypt Data Flow (3)
• Backup r11,r12,r13 in coef_reg, r10≠0 → Read h7

– ram_adr = data_ptr, ram_ren = 1
– data_ptr ← data_ptr – 1

• Accumulate r10 h7, r11≠0 → Read h6
– ram_adr = data_ptr, ram_ren = 1
– data_ptr ← data_ptr – 1
– acc ← acc + r10 h7 = -h0+h9+h8+h7

• Accumulate r11 h6, r12=0 → r13≠0 → Read h4
– ram_adr = data_ptr – 1, ram_ren = 1
– data_ptr ← data_ptr – 2
– acc ← acc + r11 h6 = -h0+h9+h8+h7-h6
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NTRUEncrypt Data Flow (4)
• Accumulate r13 h4, Read r2

– ram_adr = coef_ptr, ram_ren = 1
– coef_ptr ← coef_ptr + 1
– acc ← acc + r13 h4 = -h0+h9+h8+h7-h6-h4

• Backup r21,r22,r23 in coef_reg, r20=0 → r21=0 → r22=0 
→ r23=0 → Read m0
– ram_adr = read_ptr, ram_ren = 1
– read_ptr ← read_ptr + 1

• Accumulate m0, Write e0
– ram_adr = write_ptr, ram_wen = 1, ram_inp = acc + m0
– write_ptr ← write_ptr + 1

• Continue with e1!!!
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NTRU PKC 
Data Flow 

(Overall Encryption)
(1)

Initialization: state ← 0000000 (idle state)

Start: coef_pointer ← coef_init (blinding value for encryption)
data_pointer ← data_init (public key for encryption)
read_pointer ← plaintext_pointer
write_pointer ← ciphertext_pointer
msg_counter ← 1
state ← 0000001 (coef read state)

state = 0000001: read_adr = coef_ptr (RAM read address)
coef_pointer ← coef_pointer + 1
state ← 0000010 (first data read state)

state = 0000010: if  coef_pointer[0] ≠ 0:
read_adr = data_ptr
data_pointer ← data_pointer - 1
state ← 0000100 (second data read state)

else if  coef_pointer[1] ≠ 0:  (act like state = 0000100)
read_adr = data_ptr - 1
data_pointer ← data_pointer - 2
state ← 0001000 (third data read state)

else if  coef_pointer[2] ≠ 0:  (act like state = 0001000)
read_adr = data_ptr - 2
data_pointer ← data_pointer - 3
state ← 0010000 (fourth data read state)

else if  coef_pointer[3] ≠ 0:  (act like state = 0010000)
read_adr = data_ptr - 3
data_pointer ← data_pointer - 4
if  msg_counter == N state ← 0100000 (plaintext read state)
else state ← 0000001 (coef read state)

else if  msg_counter == N:  (act like state = 0100000)
read_adr = read_pointer
data_pointer ← data_pointer - 4
state ← 1000000 (ciphertext write state)

else:  (act like state = 0000001)
read_adr = coef_pointer
coef_pointer ← coef_pointer + 1
data_pointer ← data_pointer - 4
state ← 0000010 (read first data state)
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NTRU PKC 
Data Flow 

(Overall Encryption)
(2)

state = 0000100: if  cf_pnt[1] ≠ 0:
rd_adr = dt_ptr
dt_pnt ← dt_pnt - 1
state ← 0001000 (third data read state)

else if  cf_pnt[2] ≠ 0:  (act like state = 0001000)
rd_adr = dt_ptr - 1
dt_pnt ← dt_pnt - 2
state ← 0010000 (fourth data read state)

else if  cf_pnt[3] ≠ 0:  (act like state = 0010000)
rd_adr = dt_ptr - 2
dt_pnt ← dt_pnt - 3
if  msg_cnt == N state ← 0100000 (plaintext read state)
else state ← 0000001 (coef read state)

else if  msg_cnt == N:  (act like state = 0100000)
rd_adr = rd_pnt
dt_pnt ← dt_pnt - 3
state ← 1000000 (ciphertext write state)

else:  (act like state = 0000001)
rd_adr = cf_pnt
cf_pnt ← cf_pnt + 1
dt_pnt ← dt_pnt - 3
state ← 0000010 (read first data state)

state = 0001000: if  cf_pnt[2] ≠ 1:
rd_adr = dt_ptr
dt_pnt ← dt_pnt - 1
state ← 0010000 (fourth data read state)

else if  cf_pnt[3] ≠ 0:  (act like state = 0010000)
rd_adr = dt_ptr - 1
dt_pnt ← dt_pnt - 2
if  msg_cnt == N state ← 0100000 (plaintext read state)
else state ← 0000001 (coef read state)

else if  msg_cnt == N:  (act like state = 0100000)
rd_adr = rd_pnt
dt_pnt ← dt_pnt - 2
state ← 1000000 (ciphertext write state)

else:  (act like state = 0000001)
rd_adr = cf_pnt
cf_pnt ← cf_pnt + 1
dt_pnt ← dt_pnt - 2
state ← 0000010 (read first data state)
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NTRU PKC 
Data Flow 

(Overall Encryption)
(3)

state = 0010000: if  cf_pnt[3] ≠ 0:
rd_adr = dt_ptr
dt_pnt ← dt_pnt - 1
if  msg_cnt == N state ← 0100000 (plaintext read state)
else state ← 0000001 (coef read state)

else if  msg_cnt == N:  (act like state = 0100000)
rd_adr = rd_pnt
dt_pnt ← dt_pnt - 1
state ← 1000000 (ciphertext write state)

else:  (act like state = 0000001)
rd_adr = cf_pnt
cf_pnt ← cf_pnt + 1
dt_pnt ← dt_pnt - 1
state ← 0000010 (read first data state)

state = 0100000: rd_adr = rd_pnt
state ← 1000000 (ciphertext write state)

state = 1000000: wr_ptr = wr_pnt
cf_pnt ← coef_init
dt_pnt ← dt_pnt + 2
rd_pnt ← rd_pnt + 1
wr_pnt ← wr_pnt + 1
msg_cnt ← msg_cnt + 1
if  msg_cnt == N state ← 0000000 (idle state)
else state ← 0000001 (coef read state)
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NTRU PKC Decryption Data Flow
• Decryption performed using the same idea, but 

multiplication is done in two phases.
• An additional mod-3 register is used.
• Except this difference and initialization of address 

pointers, all the operations performed during 
encryption and decryption are the same.

• To simplify the circuit and minimize gate count, the 
same address change and coefficient read logic are 
used (with different pointers) for encryption and the 
both phases of decryption.
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NTRU Block Diagram
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Performance
N=167
• # of cycles (enc)

=>  13,360 cycles 

• # of cycles (dec)

=>  54,776 cycles 

( 2 / 2 2)rN N W L× + × +  

2 ( 2 / 2 2)fN N W L× × + × +  
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Performance

Number of  Slices 204

Max. Speed (MHz) 136.5

Number of LUTS 457

BRAM 1

• Implemented on a Xilinx-Virtex5 VLX20T
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Performance

Number of  Slices 307

Max. Speed (MHz) 57.2

Number of LUTS 553

BRAM 1

• a Xilinx Spartan3-S50
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Performance

Number of Tiles 1157

Max. Speed (MHz) 15.1

BRAM 4

• an Actel APA075
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Performance

Gate Count (KGE) 1.4

Max. Speed (MHz) 254

SPRAM 1 KB

Power (uW/MHz) 1.6

• Implemented on 0.13u Faraday low-leakage CMOS 
std-cell library for minimum area
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Comparison
Atici et al.[9]
• Implemented on 0.13u Faraday low-leakage library
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Thanks for listening…

Questions?


