
Ultra-Compact Reconfigurable
NTRUEncrypt Public Key

Cryptosystem Core

June 17, 2011

Elif Bilge Kavun, M.Sc.
Tolga Yalcin, Ph.D.

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

2

Outline

• Why Compact NTRUEncrypt Core?
• NTRU Public Key Cryptosystem
• Lightweight NTRU PKC
• NTRUEncrypt Operation
• NTRUEncrypt Data Flow
• NTRU PKC Data Flow (Overall Encryption)
• NTRU PKC Decryption Data Flow
• NTRU Block Diagram
• Performance and Comparison

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

3

Why Compact NTRUEncrypt Core?
• Security of lightweight devices, i.e. RFID tags, smart

cards, NFC, Internet of things
• A lightweight cryptographic core should

– Be compact: 1K-3K GE,
– Consume low-power: 5-10 uW @ 100 KHz,
– Provide 64-80 bit security,
– Be flexible via reconfiguration,

• Lattice-based NTRU public key cryptosystem can be an
alternative to other public key cryptosystems (such as
RSA and ECC)

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

4

NTRU Public Key Cryptosystem
• Based on shortest vector problem (SVP).
• Parameterized by three integers (N, p, q), where N is

prime, gcd(p, q) = 1 and p<<q.
• Moderate security: N=167, p=3, q=128.
• Encryption:
• Decryption:

• h is the public key and (f,fp) pair is the private key.

() () () () mode x pr x h x m x q≡ ∗ +
() () () () () () () moda x f x e x pr x g x f x m x q≡ ∗ ≡ ∗ + ∗
() mod () ()b x a p f x m x≡ ≡ ∗
() () () mod ()pc x b x f x p m x≡ ∗ ≡

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

5

Lightweight NTRU PKC (1)
• Message and key already stored inside the

memory (RAM, flash, OTP, etc).
• Required throughput already low (w.r.t. block

ciphers and hash functions).
• Can we exploit these two facts and turn them

into an advantage?
• Answer is YES:

– Just use existing memory (with additional temporary
memory space and a few operational registers).

– Minimize core area (just computational logic, and
word based at that)!

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

6

Lightweight NTRU PKC (2)
• Main impact on the addressing scheme:

– Several pointers utilized to determine the start points of
different coefficients (blinding value, public key, and private
keys) and data (plaintext, ciphertext, temporary data).

• In the current design, pointers are given as constants:
– Possible to store the pointers in registers (or even in the RAM)

allowing the NTRU core to work with various parameter sets
(reconfigurable security levels).

• Optimization of the number of multiplications:
– Zero coefficient multiplications are detected by the control

logic, and skipped (less memory accesses → improved
throughput).

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

7

NTRUEncrypt Operation (1)
• Operation explained by means of a (well) known

encryption example, where N = 11:

• h, r, m given as:

0 0 1 10 9 2 10 1 0

0 1 10 2 1

10

0 10 1 9 10 0 10

()

(..)

(..)

e r h m r h r h r h r h m

r h r h m x

r h r h r h m x

= × + = + + + +

 + + +

 +

 + + + +

+

+

+

K

K

2 3 4 5 6 7 8 9 10

2 3 4 5 7

3 4 8 9 10

8 25 22 20 12 24 15 19 12 19 16

1

1 .

h x x x x x x x x x

x x x x x

x x x x x

x
r
m

= + + + + + + + + + +

= − + + + − −

= − + − − + +

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

8

NTRUEncrypt Operation (2)
In summary, blinding value, r, can be represented as:

r = -1,0,1,1,1,-1,0,-1,0,0,0
r = N,Z,N,N,N,N,Z,N,Z,Z,Z
r = 11 , 00 , 01 , 01 , 01 , 11 , 00 , 11 , 00 , 00 , 00

And stored inside the 8-bit wide memory as:
r = r00,r01,r02,r03, r10,r11,r12,r13, r20,r21,r22(,r23)
r = r0 , r1 , r2

Each of hi stored inside one memory location:
h = h0 , h1 , h2 , h3 , h4 , h5 , h6 , h7 , h8 , h9 , h10

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

9

NTRUEncrypt Operation (3)
• Then how do we calculate e’s, e.g. e0

e0 = r00 h0 + r01 h10 + … + r21 h2 + r22 h1 + m0

• Normally, we need to:
– Read all r’s (11 words), all h’s (11 words), m0 (1 word),
– Write e0 (1 word)
→ 24 memory accesses in total (assuming SP memories)

• However:
– All r’s are stored in 3 words → 3 memory accesses for r’s.
– Only, 6 of r’s are non-zero → 6 memory accesses for h’s.
– Only 11 memory accesses in total → 2.18 times the regular

throughput.

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

10

NTRUEncrypt Data Flow (1)
• Encryption starts: Initializations

– coef_ptr ← r_ptr
– data_ptr ← h_ptr
– read_ptr ← ptxt_ptr
– write_ptr ← ctxt_ptr

• Read r0
– ram_adr = coef_ptr, ram_ren = 1
– coef_ptr ← coef_ptr + 1

• Backup r01,r02,r03 in coef_reg, r00≠0 → Read h0
– ram_adr = data_ptr, ram_ren = 1
– data_ptr ← data_ptr – 1

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

11

NTRUEncrypt Data Flow (2)
• Accumulate r00 h0, r01=0 → r02≠0 → Read h9

– ram_adr = data_ptr – 1, ram_ren = 1
– data_ptr ← data_ptr – 2
– acc ← r00 h0 = -h0

• Accumulate r02 h9, r03≠0 → Read h8
– ram_adr = data_ptr, ram_ren = 1
– data_ptr ← data_ptr – 1
– acc ← acc + r02 h9 = -h0+h9

• Accumulate r03 h8, Read r1
– ram_adr = coef_ptr, ram_ren = 1
– coef_ptr ← coef_ptr + 1
– acc ← acc + r03 h8 = -h0+h9+h8

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

12

NTRUEncrypt Data Flow (3)
• Backup r11,r12,r13 in coef_reg, r10≠0 → Read h7

– ram_adr = data_ptr, ram_ren = 1
– data_ptr ← data_ptr – 1

• Accumulate r10 h7, r11≠0 → Read h6
– ram_adr = data_ptr, ram_ren = 1
– data_ptr ← data_ptr – 1
– acc ← acc + r10 h7 = -h0+h9+h8+h7

• Accumulate r11 h6, r12=0 → r13≠0 → Read h4
– ram_adr = data_ptr – 1, ram_ren = 1
– data_ptr ← data_ptr – 2
– acc ← acc + r11 h6 = -h0+h9+h8+h7-h6

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

13

NTRUEncrypt Data Flow (4)
• Accumulate r13 h4, Read r2

– ram_adr = coef_ptr, ram_ren = 1
– coef_ptr ← coef_ptr + 1
– acc ← acc + r13 h4 = -h0+h9+h8+h7-h6-h4

• Backup r21,r22,r23 in coef_reg, r20=0 → r21=0 → r22=0
→ r23=0 → Read m0
– ram_adr = read_ptr, ram_ren = 1
– read_ptr ← read_ptr + 1

• Accumulate m0, Write e0
– ram_adr = write_ptr, ram_wen = 1, ram_inp = acc + m0
– write_ptr ← write_ptr + 1

• Continue with e1!!!

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

14

NTRU PKC
Data Flow

(Overall Encryption)
(1)

Initialization: state ← 0000000 (idle state)

Start: coef_pointer ← coef_init (blinding value for encryption)
data_pointer ← data_init (public key for encryption)
read_pointer ← plaintext_pointer
write_pointer ← ciphertext_pointer
msg_counter ← 1
state ← 0000001 (coef read state)

state = 0000001: read_adr = coef_ptr (RAM read address)
coef_pointer ← coef_pointer + 1
state ← 0000010 (first data read state)

state = 0000010: if coef_pointer[0] ≠ 0:
read_adr = data_ptr
data_pointer ← data_pointer - 1
state ← 0000100 (second data read state)

else if coef_pointer[1] ≠ 0: (act like state = 0000100)
read_adr = data_ptr - 1
data_pointer ← data_pointer - 2
state ← 0001000 (third data read state)

else if coef_pointer[2] ≠ 0: (act like state = 0001000)
read_adr = data_ptr - 2
data_pointer ← data_pointer - 3
state ← 0010000 (fourth data read state)

else if coef_pointer[3] ≠ 0: (act like state = 0010000)
read_adr = data_ptr - 3
data_pointer ← data_pointer - 4
if msg_counter == N state ← 0100000 (plaintext read state)
else state ← 0000001 (coef read state)

else if msg_counter == N: (act like state = 0100000)
read_adr = read_pointer
data_pointer ← data_pointer - 4
state ← 1000000 (ciphertext write state)

else: (act like state = 0000001)
read_adr = coef_pointer
coef_pointer ← coef_pointer + 1
data_pointer ← data_pointer - 4
state ← 0000010 (read first data state)

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

15

NTRU PKC
Data Flow

(Overall Encryption)
(2)

state = 0000100: if cf_pnt[1] ≠ 0:
rd_adr = dt_ptr
dt_pnt ← dt_pnt - 1
state ← 0001000 (third data read state)

else if cf_pnt[2] ≠ 0: (act like state = 0001000)
rd_adr = dt_ptr - 1
dt_pnt ← dt_pnt - 2
state ← 0010000 (fourth data read state)

else if cf_pnt[3] ≠ 0: (act like state = 0010000)
rd_adr = dt_ptr - 2
dt_pnt ← dt_pnt - 3
if msg_cnt == N state ← 0100000 (plaintext read state)
else state ← 0000001 (coef read state)

else if msg_cnt == N: (act like state = 0100000)
rd_adr = rd_pnt
dt_pnt ← dt_pnt - 3
state ← 1000000 (ciphertext write state)

else: (act like state = 0000001)
rd_adr = cf_pnt
cf_pnt ← cf_pnt + 1
dt_pnt ← dt_pnt - 3
state ← 0000010 (read first data state)

state = 0001000: if cf_pnt[2] ≠ 1:
rd_adr = dt_ptr
dt_pnt ← dt_pnt - 1
state ← 0010000 (fourth data read state)

else if cf_pnt[3] ≠ 0: (act like state = 0010000)
rd_adr = dt_ptr - 1
dt_pnt ← dt_pnt - 2
if msg_cnt == N state ← 0100000 (plaintext read state)
else state ← 0000001 (coef read state)

else if msg_cnt == N: (act like state = 0100000)
rd_adr = rd_pnt
dt_pnt ← dt_pnt - 2
state ← 1000000 (ciphertext write state)

else: (act like state = 0000001)
rd_adr = cf_pnt
cf_pnt ← cf_pnt + 1
dt_pnt ← dt_pnt - 2
state ← 0000010 (read first data state)

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

16

NTRU PKC
Data Flow

(Overall Encryption)
(3)

state = 0010000: if cf_pnt[3] ≠ 0:
rd_adr = dt_ptr
dt_pnt ← dt_pnt - 1
if msg_cnt == N state ← 0100000 (plaintext read state)
else state ← 0000001 (coef read state)

else if msg_cnt == N: (act like state = 0100000)
rd_adr = rd_pnt
dt_pnt ← dt_pnt - 1
state ← 1000000 (ciphertext write state)

else: (act like state = 0000001)
rd_adr = cf_pnt
cf_pnt ← cf_pnt + 1
dt_pnt ← dt_pnt - 1
state ← 0000010 (read first data state)

state = 0100000: rd_adr = rd_pnt
state ← 1000000 (ciphertext write state)

state = 1000000: wr_ptr = wr_pnt
cf_pnt ← coef_init
dt_pnt ← dt_pnt + 2
rd_pnt ← rd_pnt + 1
wr_pnt ← wr_pnt + 1
msg_cnt ← msg_cnt + 1
if msg_cnt == N state ← 0000000 (idle state)
else state ← 0000001 (coef read state)

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

17

NTRU PKC Decryption Data Flow
• Decryption performed using the same idea, but

multiplication is done in two phases.
• An additional mod-3 register is used.
• Except this difference and initialization of address

pointers, all the operations performed during
encryption and decryption are the same.

• To simplify the circuit and minimize gate count, the
same address change and coefficient read logic are
used (with different pointers) for encryption and the
both phases of decryption.

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

18

NTRU Block Diagram

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

19

Performance
N=167
• # of cycles (enc)

=> 13,360 cycles

• # of cycles (dec)

=> 54,776 cycles

(2 / 2 2)rN N W L× + × +  

2 (2 / 2 2)fN N W L× × + × +  

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

20

Performance

Number of Slices 204

Max. Speed (MHz) 136.5

Number of LUTS 457

BRAM 1

• Implemented on a Xilinx-Virtex5 VLX20T

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

21

Performance

Number of Slices 307

Max. Speed (MHz) 57.2

Number of LUTS 553

BRAM 1

• a Xilinx Spartan3-S50

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

22

Performance

Number of Tiles 1157

Max. Speed (MHz) 15.1

BRAM 4

• an Actel APA075

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

23

Performance

Gate Count (KGE) 1.4

Max. Speed (MHz) 254

SPRAM 1 KB

Power (uW/MHz) 1.6

• Implemented on 0.13u Faraday low-leakage CMOS
std-cell library for minimum area

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

24

Comparison
Atici et al.[9]
• Implemented on 0.13u Faraday low-leakage library

June 17, 2011 Ultra-Compact Reconfigurable NTRUEncrypt Public Key Cryptosystem Core
Elif Bilge Kavun, Tolga Yalcin

25

Thanks for listening…

Questions?

