

Bundesamt für Sicherheit in der Informationstechnik

Security Research Between Attack and Design

Annelie Heuser^{1,4}, Michael Kasper^{2,4}, <u>Werner Schindler^{3,4}</u>, Marc Stöttinger^{1,4}

- 1: TU Darmstadt: Integrated Circuits and Systems Lab, Darmstadt
- 2: Fraunhofer SIT
- 3: Bundesamt für Sicherheit in der Informationstechnik (BSI), Bonn
- 4: CASED (Center for Advanced Security Research Darmstadt)

Bochum, June 2011

h_da

S LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

- Motivation
- Stochastic approach (brief reminder)
- Several variants
- Design applications
 - **Interpretation of a** β -characteristic
 - Symmetry considerations
- Conclusion

Constructive side-channel analysis

- A successful attack proves that there is a weakness but this information may not suffice to fix the vulnerability.
- Desirable: constructive attacks, which
 - point to the source of the leakage
 - (ideally) quantify the leakage
 - \rightarrow support target-oriented (re-)design
 - \rightarrow allow interaction between attack and design

- □ <u>target:</u> block cipher
- exploits power measurements at several time instants t₁ < t₂< ... < t_m
- The measurement values are interpreted as values that are assumed by random variables.
- The stochastic approach combines engineers' expertise with efficient stochastic methods from multivariate statistics.

Bundesamt für Sicherheit in der Informationstechnik

The stochastic model (basic variant)

target algorithm: block cipher (e.g., AES; no masking) $x \in \{0,1\}^p$ (known) part of the plaintext or ciphertext $\mathbf{k} \in \{0,1\}^{s}$ subkey [AES: (typically) s = 8] t time instant $I_{t}(x,k) = h_{t}(x,k) + R_{t}$ Random variable deterministic part Random variable = leakage function (depends on x and k) $E(R_{t}) = 0$ (depends on x and k) Noise (centered) quantifies the randomness of the side-channel signal at time t

(

signal at time t

The stochastic model (masking case)

- (known) part of the plaintext or ciphertext $x \in \{0,1\}^p$
- $z \in M$ masking value
- $\mathbf{k} \in \{0,1\}^{s}$ subkey
- $t \in \{t_1, t_2, \dots, t_m\}$ time instant

[AES: (typically) s = 8]

$$I_{t}(x,z;k) = h_{t}(x,z;k) + R_{t}$$
Random variable
(depends on x,z,k)
$$deterministic part = leakage function(depends on x,z,k)$$
Random variable $E(R_{t}) = 0$
Noise (centered)

- **T** Fix a subkey $k \in \{0,1\}^s$.
- **The unknown function**

$$h_{t;k} \in \{0,1\}^p \times M \times \{k\} \rightarrow \mathbb{R}, \ h_{t;k}(\mathbf{x},\mathbf{z};\mathbf{k}) \coloneqq h_t(\mathbf{x},\mathbf{z};\mathbf{k})$$

is interpreted as an element of a high-dimensional real vector space \mathcal{F} . In particular, dim $(\mathcal{F})=2^p |M|$.

□ <u>Goal:</u> Approximate $h_{t;k}$ by its image $h^*_{t;k}$ under the orthogonal projection onto a suitably selected low-dimensional vector subspace $\mathcal{F}_{u,t;k}$

Profiling, Step 1 (II)

 $\mathcal{F}_{u,t;k} \coloneqq \{h': \{0,1\}^p \times M \times \{k\} \rightarrow R | \sum_{j=0}^{u-1} \beta'_{j,t;k} g_{j,t;k} \text{ with } \beta'_{j,t;k} \in \mathbb{R} \}$ (only for masking)

The basis $g_{0,t;k}, \dots, g_{u-1,t;k}$ shall be selected under consideration of the attacked device.

The estimation of $h_{t,k}^*$ can completely be moved to the low-dimensional subspace $\mathcal{F}_{u,t;k}$, which reduces the number of measurements to a small fraction.

Profiling, Step 2

- Estimate the covariance matrix C of the noise vector (R_{t1}, ..., R_{tm}) (multivariate normal distribution)
- □ → probability densities $f_{x,z;k}$ (·) for $(I_{t_1}(x,z;k), ..., I_{t_m}(x,z;k)).$

Sicherheit in der nformationstechnik Attack phase (analogous to template attacks)

- **D** Perform N_3 measurements on the target device
- (Maximum-likelihood principle) Decide for that subkey k*, which maximises

$$\prod_{j=1}^{N_3} \sum_{z' \in M} \Pr(Z_j = z') \widetilde{f}_{x_j, z'; k}(i_j)$$

For non-masked implementations this formula simplifies to

$$\prod_{j=1}^{N_3} \widetilde{f}_{x_j;k}(i_j)$$

Informationstechnik

Orincipal Component Analysis (PCA)

- Profiling, Step 2: The covariance matrix C may be 'almost' singular. This might cause large estimation errors for C⁻¹.
- Thus it is often advisable to consider only the information 'contained' in a subspace of R^m that is spanned by the eigenspaces of C, which belong to its largest eigenvalues: i.e., consider (P^t C P) for a suitable transformation matrix P instead of C.
- □ Typically, only 1-3 eigenvalues are 'relevant'.

Besides the "standard method" described on the previous slides there exist further variants:
Profiling with unknown masking values:

possible but less efficient than with knowledge of the masking values since all time instants have to be handled simultaneously

Attacking without profiling: possible

Within long measurement series the environmental conditions might change, influencing the power consumption and thereby violating the (silent) assumption of having identical conditions all the Fixed average (window size=100)

-5150

time.

Bundesamt

(time-local average power consumption)¹⁴

für Sicherheit in der Informationstechnik Variants of the stochastic approach (III)

- Problem: There is a drifting offset that affects the effectiveness of profiling based attacks (template attacks, stochastic approach).
- Solution: new variant of the stochastic approach that tolerates those effects (submitted).

Newest results (dpa-v2 traces)

- <u>Criterion:</u> partial success rate > 80 %:
 Contest winner: 5890 traces, 2nd rank: 7515 traces
 Our new method: (checked only at the public base!):
 4117 traces
- <u>Criterion:</u> global success rate > 80 %
 Contest winner: 7061 traces, 2nd rank: 10666 traces
 Our new method (<u>checked only at the public base!</u>):
 6705 traces

Note: The best results were gained with a 93dimensional subspace.

Bundesamt für Sicherheit in der Informationstechnik

Note

For design purposes only profiling step 1 is relevant.

Bundesamt für Sicherheit in der Informationstechnik

All experiments were performed on the **SASEBO FPGA evaluation board**

AES implementation on an FPGA

<u>Target:</u> key byte $k_{(2)} \in \{0,1\}^8$ in Round 10

 $R_{(x)}$ value of byte register x after Round 10

9-dimensional vector subspace:

$$\begin{split} g_{0,t;k(2)} \left((\mathsf{R}_{(2)},\mathsf{R}_{(6)}),k_{(2)} \right) &= 1 \\ g_{j,t;k(2)} \left((\mathsf{R}_{(2)},\mathsf{R}_{(6)}),k_{(2)} \right) &= 2((\mathsf{R}_{(6)} \oplus S^{-1}(\mathsf{R}_{(2)} \oplus k_{(2)}))_j - 0.5) \\ & \text{for } 1 \leq j \leq 8 \end{split}$$

<u>NOTE:</u> Factor '2' and summand '-0.5 ' imply that the basis is orthonormal.

für Sicherheit in der Informationstechnik

Let

$$h_{t;k}^{*}(x,k) = \sum_{j=0}^{u-1} \beta_{j,t;k}^{*} g_{j,t;k}(x,k)$$

□ A large coefficient | $\beta_{j,t;k}^*$ | for some j > 0 means that the 'direction' of the basis vector $g_{j,t;k}$ has considerable impact on the subkey-dependent part of the leakage $h_{t;k}$.

plots for two different keys and several time instants

Bundesamt

für Sicherheit in der Informationstechnik

> Part of the SBox implementation after the synthesis process and the Place & Route process The first layer of the multiplexer network is switched by the 5th bit Different propagation delays caused by LUT to the multiplexer produces data-dependent glitches. **This implies bit-specific higher** power consumption.

(The design was synthesized for the Virtex-II pro family.)

Remark

- Generally speaking, higher-dimensional subspaces *F*_{u,t;k} may provide more precise leakage models (work in progress).
- Another important question remains: Is the choice of the basis vectors appropriate?

Leakage model \mathcal{B}

The basis vectors

$$\begin{split} g_{0,t;k(2)} \left((\mathsf{R}_{(2)},\mathsf{R}_{(6)}),k_{(2)} \right) &= 1 \\ g_{j,t;k(2)} \left((\mathsf{R}_{(2)},\mathsf{R}_{(6)}),k_{(2)} \right) &= 2((\mathsf{R}_{(6)} \oplus S^{-1}(\mathsf{R}_{(2)} \oplus k_{(2)}))_j - 0.5) \\ & \text{for } 1 \leq j \leq 8 \end{split}$$

depend on $((R_{(2)}, R_{(6)}), k_{(2)})$ only through $\Phi((R_{(2)}, R_{(6)}), k_{(2)}) := R_{(6)} \oplus S^{-1}(R_{(2)} \oplus k_{(2)})$ (symmetry assumption \mathcal{B})

The same symmetry property holds for $h_{t,k(2)}^*$ ((R₍₂₎,R₍₆₎),k₍₂₎) and $h_{t,k(2)}^*$ ((R₍₂₎,R₍₆₎),k₍₂₎)

Alternate leakage model \mathcal{A}

The basis vectors

alternate 9-dimensional vector subspace: $g'_{0,t;k(2)} ((R_{(2)},R_{(6)}),k_{(2)}) = 1$

$$\begin{array}{l} g'_{j,t;k(2)} \left((\mathsf{R}_{(2)},\mathsf{R}_{(6)}),k_{(2)} \right) = 2 \left((\mathsf{S}^{\text{-1}}(\mathsf{R}_{(2)} \oplus k_{(2)}))_{j} \text{-0.5} \right) \\ & \quad \text{for } 1 \leq j \leq 3 \end{array}$$

depend on $((R_{(2)}, R_{(6)}), k_{(2)})$ only through $\Phi'((R_{(2)}, R_{(6)}), k_{(2)}) := S^{-1}(R_{(2)} \oplus k_{(2)})$ (alternate symmetry assumption \mathcal{A})

Symmetries

If symmetry assumption \mathcal{B} is true then $\beta^*_{j,t;k'} = \beta^*_{j,t;k''}$ for all k',k''.

Analogously, if symmetry assumption \mathcal{A} is true then $\beta'_{j,t;k'} = \beta'_{j,t;k''}$ for all k',k''.

<u>Note:</u> In case of a (perfect) symmetry it suffices to estimate $h_{t,k}^*$ for any single key k.

provides a symmetry metric.

This metric has several interesting properties. In particular, it is invariant under all orthonormal bases of $\mathcal{F}_{u,t;k}$ with first vector $g_{0,t;k}$ =1. The data-independent coefficient $\tilde{\beta}_{0,t;k}$ is neglected.

Bundesamt für Sicherheit in der Informationstechnik

CASED 🗳

Empirical Results (DSD 2011, to appear)

28

Conclusion

- The stochastic approach is useful for many applications.
- It is a powerful attack method but it can also serve as a tool to support the design of secure implementations (constructive side-channel analysis).
- In particular, the β-characteristic allows to draw conclusions on specific features of an implementation, and leakage models can be verified or falsified.