

Department of Electronics and Multimedia Communications Faculty of Electrical Engineering and Informatics Technical University of Košice Park Komenského 13, 04120 Košice, SLOVAKIA Chair for Embedded Security Ruhr-Universität Bochum Universitätsstr. 150, 44801 Bochum GERMANY

A Very Lightweight Reconfigurable Elliptic Curve Crypto-Processor

Michal Varchola michal@varchola.com Tim Güneysu gueneysu@crypto.rub.de

Oliver Mischke mischke@crypto.rub.de

Cryptographic Architectures Embedded in Reconfigurable Devices (CryptArchi) June 15-18th 2011, Bochum, Germany

Related Work

Motivation

The MicroECC Requirements

Background

HW Implementation

Results & Comparison

Conclusion & Future Work

Related Work Jo Vliegen et al., ASAP 2010

"A compact FPGA-based architecture for elliptic curve cryptography over prime fields"

Authors claimed:

"The comparison with other implementations on the same generation of FPGAs learns that our design occupies the smallest area."

Their ECC processor works over 256-bit prime fields for all elliptic curves of a special form

They use Montgomery multiplication

Datapath	Slices	HW mults.	BRAMs	ECPM	Family
16-bit	1694	2	9	29.83ms	Virtex-II Pro
32-bit	1947	9	9	15.75ms	Virtex-II Pro

Related Work Tim Guneysu and Christof Paar, CHES 2008

"Ultra High Performance ECC over NIST Primes on Commercial FPGAs"

Highly parallel architecture with wide use of DSPs

NIST-224 and NIST-256 elliptic curves support

Integer Multiplication + Fast reduction algorithm

Curve	Slices	DSPs	BRAMs	ECPM	Family
NIST-224	1580	26	11	365us	Virtex-IV
NIST-256	1715	32	11	495us	Virtex-IV
NIST-224	24452	468	198	26.5us	Virtex-IV
NIST-256	24574	512	176	40.5us	Virtex-IV

Motivation Why we need another FPGA ECC processor?

- ECC is favorite asymmetric key cryptosystem for small embedded platforms
- FPGAs are preffered platform for such cryptosystems
- Existing fast ECC processors requires plenty of logic resources or dedicated DSP blocks
- DSP blocks often disable multi-vendor support
- Existing Lightweight designs are quite slow
- To implement power analysis countermesasures

The MicroECC Requirements

- Small footprint in FPGA (important for the Actel)
- As good performance as possible
- Multi-vendor support (Actel, Xilinx, ...)
- Side channel analysis countermeasures
- Reprogrammable NIST-224 or NIST-256 support
- Embedded software Compiler & Simulator

Background The ECC Stack and the MicroECC

Background Modular Multiplication with Fast Reduction

Algorithm 1 NIST Reduction with $P-256 = 2^{256} - 2^{224} + 2^{224}$ $2^{192} + 2^{96} - 1$ **Require:** Double-sized integer $c = (c_{15}, \ldots, c_2, c_1, c_0)$ in base 2^{32} and $0 \le c < P-256^2$ **Ensure:** Single-sized integer $c \mod P-256$. 1: Concatenate c_i to following 256-bit integers z_i : $z_1 = (c_7, c_6, c_5, c_4, c_3, c_2, c_1, c_0),$ $z_2 = (c_{15}, c_{14}, c_{13}, c_{12}, c_{11}, 0, 0, 0),$ $z_3 = (0, c_{15}, c_{14}, c_{13}, c_{12}, 0, 0, 0),$ $z_4 = (c_{15}, c_{14}, 0, 0, 0, c_{10}, c_9, c_8),$ $z_5 = (c_8, c_{13}, c_{15}, c_{14}, c_{13}, c_{11}, c_{10}, c_9),$ $z_6 = (c_{10}, c_8, 0, 0, 0, c_{13}, c_{12}, c_{11}),$ $z_7 = (c_{11}, c_9, 0, 0, c_{15}, c_{14}, c_{13}, c_{12}),$ $z_8 = (c_{12}, 0, c_{10}, c_9, c_8, c_{15}, c_{14}, c_{13}),$ $z_9 = (c_{13}, 0, c_{11}, c_{10}, c_9, 0, c_{15}, c_{14})$ 2: Compute $c = (z_1 + 2z_2 + 2z_3 + z_4 + z_5 - z_6 - z_7 - z_7 - z_7 - z_6 - z_7 - z_7 - z_7 - z_6 - z_7 - z_7$ $z_8 - z_9 \mod \text{P-256}$

Background SCA Countermeasures

```
SPA: Algorithm 2 Montgomery ladder
          Require: point P, integer k = (1k_{l-2}, ..., k_1, k_0)_2
          Ensure: Q = k.P
            Q \leftarrow P, S \leftarrow 2.P
            for i = l - 2 downto 0 do
               if k_i = 1 then
                 Q \leftarrow Q + S, S \leftarrow 2.S
               else
                  S \leftarrow Q + S, Q \leftarrow 2.Q
               end if
            end for
            return Q
```

DPA:

Randomizing the homogeneous projective coordinates(X,Y,Z) with a random $\lambda \neq 0$ to (λ X, λ Y, λ Z). The random variable λ can be updated in every execution or after each doubling or addition.

HW Implementation MicroECC-1 and MicroECC-2

MicroECC-1:

- 16-bit datapath
- NIST-256 curve support
- Virtex-II Pro FPGA
- Evaluated in HW

MicroECC-2:

- 16-bit or 32-bit datapath
- NIST-224 or NIST-256 curve support
- Xilinx and Actel FPGA support
- Highly optimized arithmetic unit
- In development now

HW Implementation MicroECC Architecture

- Software Engine executes the embedded program stored in Program Memory
- Arithmetic and Logic Unit (ALU) has 16-bit (or 32-bit) datapath
- ALU CTRL is set of FSMs which controls execution of each instruction
- Data Memory Controller (DM CTRL) controls reads and writes to DMs according decoded instruction
- Data Memories (DM) store constants variables and instructions for the fast reduction algorithm
- Two dual port data memories DM A and DM B have 4 data ports: we can read 3 operands and write 1 result

Instructions related to flow of the embedded program:

WRPGM - Write to Program Memory of a custom MC
RDPGM - Read from Program Memory of a custom MC
EXERTN - Execute Routine
JMPFT - Jump if Flag is True, otherwise continue
JMPFF - Jump if Flag is False, otherwise continue
JMP - Unconditional Jump
CALL - Routine Call; maximum three consecutive calls due to 3-level hardware stack
RET - Return from Routine

HW Implementation MicroECC Instruction Set

Instruction related to the Arithmetic and Logic Unit:

- CHKB Check Bit
- **WRITE** Write to Register File (DM A and DM B)
- **READ** Read from Register File (DM A and DM B)
- **MOVE** Move data in Register File
- **MADD** Modular Addition
- **MSUB** Modular Subtraction
- **MMUL** Modular Multiplication
- **CMPGR** Comparison: Is A Grater than B?
- **CMPEQ** Comparison: Are A and B Equal?
- **CMPLO** Comparison: Is A Lower than B?

HW Implementation Arithmetic & Logic Unit - Integer Product

HW Implementation Arithmetic & Logic Unit - Fast Reduction

HW Implementation Arithmetic & Logic Unit - Modular Addition/Subtraction

CryptArchi, June 15-18th 2011, Bochum, Germany

15 / 18

HW Implementation Vendor Dependent Multiplication Block

Xilinx:

MicroECC-2/16: one 16x16 HW Multiplier block MicroECC-2/32: four 16x16 HW Multiplier blocks and CSA

Actel:

MicroECC-2/16: parallel 16x16 Multiplier (1100 tiles) MicroECC-2/32: parallel 32x32 Multiplier (4000 tiles) both have two outputs after the CSA addition

Results & Comparison MicroECC-1/2 vs. other designs

Design	FPGA	Slices Tiles	HW mult	RAM blocks	Max. Freq.	ECPM	Curve
MicroECC-1/16	V2P	615	1	3	165 MHz	15 ms	N-256
MicroECC-1/16	SmFus	3720	0	12	55 MHz	45 ms	N-256
MicroECC-2/16	V2P	650*	1	3	265 MHz*	9 ms*	N-256
MicroECC-2/32	V2P	1100*	4	3	225 MHz*	3.5 ms*	N-256
MicroECC-2/16	SmFus	3600*	0	8*	150 MHz*	16 ms*	N-256
MicroECC-2/32	SmFus	7000*	0	8*	120 MHz*	7 ms*	N-256
Vliegen 16	V2P	1694	2	9	108 MHz	30 ms	any 256
Vliegen 32	V2P	1947	7	9 >>	68 MHz	15 ms	any 256
McIvor et al.	V2P	15755	256	0	39.5 MHz	3.84 ms	any 256
Orlando et al.	V1000	11416	0	35	40 MHz	3 ms	N-192

V2P - Xilinx Virtex-II Pro SmFus - Actel Smart Fusion V1000 - Xilinx XCV1000E-8

* estimated values according current state of development

Conclusion & Future Work

Conclusion:

- Better performance and less resources usage than Vliegen et al. design
- Just NIST prime curves support (NIST-224,256)
- Compiler and Simulator written in ANSI C
- All NIST curve parameters are held in DM including instructions for fast reduction; in other words: selection between NIST-224 or NIST-256 is done on a software level, i.e. dynamicaly switchable

Future work:

- Completing the MicroECC-2 processor with the goal of the estimated performance
- SPA and DPA evaluation

Thank You