- Cryptarchi 2012 -

A NOVEL TRUE RANDOM NUMBERS GENERATOR USING SELF-TIMED RINGS

Karim CHERKAOUI (LaHC) Laurent FESQUET (TIMA) Viktor FISCHER (LaHC) Alain AUBERT (LaHC)

> LaHC / TIMA lab Rhônes-Alpes Region PhD Fund SEMBA PROJECT – ISLE Cluster

June 2012

Université Jean Monnet– St-Etienne FRANCE

Randomness in digital devices

2

 Macroscopic phenomena seem deterministic

« God does not play dice with the universe » Albert Einstein

 Standard interpretation of quantum mechanics: microscopic phenomena are objectively random

Subatomic particles

Thermal agitation, shot noise ...

transistors

Generating Random Numbers Using Jitter

Jitter Variations of a digital signal significant instants from their ideal position in time as a consequence of noise in electronic devices

How do we extract random numbers from jitter?

3

Challenge Jitter magnitude is very small (usually <1% of the oscillation period)

> Combine several signals to reduce the time lapse between successive events

Combining Signals to Harvest Randomness

The time domain is divided into equally matched intervals called « Urns »

urns width ~ jitter boundaries

How to fill all urns with at least one event per urn?

Combined RO-TRNG (1)

5

Sunar's Approach Uses several ring oscillators having the same frequency [1]

Drawback No control of the relative phases of each oscillator

The number L of uniformely random selections of N urns such as each urn is selected at least once

Results 114 rings of 13 stages + resilient function using BHC codes to achieve a satisfactory filling rate and entropy per bit

[1] Sunar et. al. « A provably secure true random numbers generator with a built-in tolerance to active attacks »

Combined RO-TRNG (2)

+++

- Stochastic model
- Easy to implement

- Size / electrical consumption
- Locking and dependency [2]
- True randomness VS pseudo-randomness [2]

Presented work A new way to uniformely fill the time domain with events using one ring oscillator called self-timed ring

Outline

- Combined Ring Oscillators TRNG
- A Novel TRNG Architecture Using Self-timed Rings
 - TRNG Architecture and Principle
 - Self-timed Ring Architecture and Behavior
- Stochastic Model for Bias and Entropy Estimators
 - Maximal Bias and Minimal Entropy per Bit
 - Bias Correction
- Experimental Results
 - Implementation and Adequation to the Model
 - Period and Jitter Measurements
 - Statistical Evaluation
- Conclusion / Future Works

Outline

- Combined Ring Oscillators TRNG
- A Novel TRNG Architecture Using Self-timed Rings
 - TRNG Architecture and Principle
 - Self-timed Ring Architecture and Behavior
- Stochastic Model for Bias and Entropy Estimators
 - Maximal Bias and Minimal Entropy per Bit
 - Bias Correction
- Experimental Results
 - Implementation and Adequation to the Model
 - Period and Jitter Measurements
 - Statistical Evaluation
- Conclusion / Future Works

TRNG Principle and Architecture

Self-timed Ring Architecture

8

Asynchronous micropipeline closed to form a ring

The micropipeline stages communicate using a handshake request/acknowledge protocol

Temporal Behavior of STRs (1)

9

Two oscillation modes

Temporal behavior of a ring stage determined by two analog phenomena

The Charlie effect

The closer are the inputs events the longer is the stage propagation delay

The Drafting effect

The shorter is the time between two successive output commutations, the shorter is the propagation delay

Temporal Behavior of STRs (2)

10

How to set the evenly-spaced oscillation mode ?

The elapsed time between successive events is auto-controlled

[3] S. Fairbanks and Simon Moore « Analog micropipeline rings for high precision timing »

Jitter in Self-timed Rings

11

The elapsed time between events is auto-controlled

Jitter does not propagate from one stage to another

Measurements in Altera and Xilinx devices

STRs Built-in Phase Control

12

N events confined in an *L*-stage STR spread around the ring $\mathbf{P} \varphi_n = n \times \frac{N}{L} \times 180^\circ$

- Phase shift between two stages separated by *n* stages
- L and N co-prime -> L equi-distant phases

$$\Delta \varphi = \frac{T}{2L}$$

The phase resolution can be set as short as needed

Propagation of 2 events in a 5-stage STR

[3] S. Fairbanks and Simon Moore « Analog micropipeline rings for high precision timing » [4] O.Ellisati et. al. « A novel high-speed multiphase oscillator using self-timed rings »

Summary

- Timings between the events in the STR are auto-controlled
- □ The phase resolution of the STR can be set as short as needed

Outline

- Combined Ring Oscillators TRNG
- A Novel TRNG Architecture Using Self-timed Rings
 - TRNG Architecture and Principle
 - Self-timed Ring Architecture and Behavior
- Stochastic Model for Bias and Entropy Estimators
 - Maximal Bias and Minimal Entropy per Bit
 - Bias Correction
- Experimental Results
 - Implementation and Adequation to the Model
 - Period and Jitter Measurements
 - Statistical Evaluation
- Conclusion / Future Works

Stochastic Model

14

Objective Compute the probability to sample a '0' or a '1' with respect to the sampling moment *t*

$X_{i-1} \le t$	$X_i \leq t$	sampled data
0	0	$ar{u}$
0	1	u
1	0	u
1	1	$ar{u}$

Computing probabilities

15

We use the cumulative density function of the normal distribution

Bias and Entropy Per Bit

16

Definition Entropy and absolute bias of a raw random bit at the TRNG output

$$H = -P(u)\log_2(P(u)) - (1 - P(u))\log_2(1 - P(u))$$
$$|B| = \left|\frac{1}{2} - P(u)\right| \qquad function of t, T, L and \sigma$$

 \square Minimal bias and maximal entropy are obtained when t=0

$$\Rightarrow H_{\min} = -P_{t=0}(u) \log_2(P_{t=0}(u)) - (1 - P_{t=0}(u)) \log_2(1 - P_{t=0}(u))$$
with $P_{t=0}(u) = 1 - 2\Phi(\frac{T}{4L\sigma}) + 2\Phi^2(\frac{T}{4L\sigma})$

$$\Rightarrow \left| |B_{\max}| = \left| \frac{1}{2} - 2\Phi(\frac{T}{4L\sigma}) - 2\Phi^2(\frac{T}{4L\sigma}) \right|$$

Design Methodology

METHODOLOGY

First, measure the jitter magnitude and the oscillation period, then:

Strategy 1

Select *L* to achieve at worst 0,01 maximal absolute bias per bit (~ 0,99 minimal entropy per bit)

Maximize size and speed

Strategy 2

L is not sufficient to achieve the required entropy per bit, successive bits are compressed using a parity filter to enhance the entropy per bit

Minimize size and speed

Bias Correction

18

Condition Successive sampled bits are independent

Parity filter structure

MethodCompute *n* the filter order to obtain a 0.99 minimal entropy at the filter
output

Drawback Throuput is divided by *n*

Outline

- Combined Ring Oscillators TRNG
- A Novel TRNG Architecture Using Self-timed Rings
 - TRNG Architecture and Principle
 - Self-timed Ring Architecture and Behavior
- Stochastic Model for Bias and Entropy Estimators
 - Maximal Bias and Minimal Entropy per Bit
 - Bias Correction
- Experimental Results
 - Implementation and Adequation to the Model
 - Period and Jitter Measurements
 - Statistical Evaluation
- Conclusion / Future Works

Implementation and Adequacy to the Model

Preliminary Measurements

20

- Experimental setup
 - Wideband digital oscilloscope (3.5 GHz bandwidth and 40 Gsample/s) + Lecroy statistical tools
 - Low Voltage Differential Signaling (LVDS)
 - Altera Cyclone 3 FPGA

Number of ring stages	Number of events	Oscillation period	Phase resolution	Jitter magnitude
63	32	2.07 ns	16.4 <i>ps</i>	2.1 <i>ps</i>
127	64	2.07 ns	8.2 <i>ps</i>	1.7 <i>ps</i>
255	128	2.08 ns	4.0 <i>ps</i>	1.7 <i>ps</i>
511	256	2.46 ns	2.4 <i>ps</i>	1.9 <i>ps</i>
1023	512	2.63 ns	1.3 <i>ps</i>	1.8 <i>ps</i>

Minimal Entropy and Maximal Bias Per Bit

1	

Number of ring stages	Number of events	Maximal absolute bias per bit	Minimal entropy per bit	Minimal parity filter order to achieve 0.99 entropy
63	32	~ 0.5	~ 0	_
127	64	0.46	0.26	38
255	128	0.42	0.73	8
511	256	0.12	0.96	3
1023	512	0.01	0.99	0

Having a sufficient entropy without compression can be expensive

Seek a trade-off between size and speed

□ Two interesting configurations: *L=255* and *L=511*

Evaluation (1)

22

raw random data

STR output

127-stage STR with 64 events sampled at 16 Mhz

- Statistical evaluation
 - ~ 100 MB of data using NIST SP 800-22
 - 1000 sequences of 20000 bits using FIPS 140-2 tests
 - ~ 10 MB of data using AIS-31 T0-T5 tests
- When used, the parity filter order is 8

Evaluation (2)

23

Number of ring stages	Number of events	Minimal entropy per bit	FIPS 140-1	AIS 31 (To-T5)	NIST SP 800-22
63	32	~ 0	55 %	FAIL	FAIL
127	64	0.26	98 %	PASS	FAIL
255	128	0.73	100 %	PASS	FAIL
511	256	0.96	100 %	PASS	PASS

Raw random data at 16 Mbits/s

Number of ring stages	Number of events	Minimal entropy per bit	FIPS 140-1	AIS 31 (To-T5)	NIST SP 800-22
63	32	-	100 %	PASS	FAIL
127	64	0.76	100 %	PASS	PASS
255	128	0.99	100 %	PASS	PASS
511	256	> 0.99	100 %	PASS	PASS

Compressed data at 2 Mbits/s

Conclusion

□ A novel TRNG design using the jitter of propagating events in a STR

- Based on a simple and modelable principle
- A stochastic model for entropy and bias estimators
- Passes statistical tests with a high throughput
- A scalable architecture that can be adapted to measured technological paremeters and security requirements
- □ AIS31 compliant ?
 - Effective online tests to achieve PTG. 2
 - Online tests + Cryptographic postprocessing for PTG. 3

Future Works

