Leakage Squeezing — Defeating Instantaneous (d+1)th-order Correlation Power Analysis with Strictly Less Than d Masks

> Sylvain Guilley, Claude Carlet, Houssem Maghrebi, Jean-Luc Danger and Emmanuel Prouff

> > TELECOM ParisTech, Univ. Paris 8 & ANSSI

Wednesday June 20th 2012, 10th CryptArchi Workshop — Château de Goutelas, Marcoux

Presentation Outline

- 2 High-Order Masking
- High-Order CPA Immunity
- 4 Leakage Squeezing [MGD11]
- 5 Conclusions and Perspectives

3

Presentation Outline

Introduction

- 2 High-Order Masking
- 3 High-Order CPA Immunity
- 4 Leakage Squeezing [MGD11]
- 5 Conclusions and Perspectives

3

< 回 > < 三 > < 三 >

Context — Protection of Block Ciphers

Definition of a sensitive variable

- Z: a sensitive variable, *i.e.* that depends
 - on a unknown static key K and
 - on a known dynamic plaintext/ciphertext X.

Side-Channel Analysis

Predict Z,

- despite countermeasures (e.g. masking with M),
- so as to distinguish the correct $K = k^*$ from the incorrect key guesses.

< 同 > < 三 > < 三 > <

Presentation Outline

1 Introduction

2 High-Order Masking

3 High-Order CPA Immunity

4 Leakage Squeezing [MGD11]

5 Conclusions and Perspectives

3

< 回 > < 三 > < 三 >

Masking at Order d

Definition

- Split a sensitive variable $Z \in \mathbb{F}_2^n$
 - into d+1 random shares, noted $\vec{S} = (S_i)_{i \in \llbracket 0, d \rrbracket}$,
 - in such a way that the relation S₀ ⊥ · · · ⊥ S_d = Z is satisfied, for group operation ⊥ (e.g. the XOR operation in Boolean masking).

Soundness of the *d*th Order Masking Scheme

- Z can be deterministically reconstructed knowing the d + 1 shares, while
- no information about Z can be extracted from strictly less than d + 1 shares.

イロト イポト イヨト イヨト

Example of Secure Computation

Other dth Order Sound Masking Schemes Exist... "Provably Secure Higher-Order Masking of AES", [RP10].

★ 3 >

Order of the Attack

Independent Leaking of the Shares

Modelization

- The leakage passes through the noisy functions ℓ_i , where
- $\ell_i: X \mapsto f_i(X) + N_i$.
- Notation: $\vec{L} \doteq (L_0, \cdots, L_d) \doteq (\ell_0(S_0), \cdots, \ell_d(S_d)).$

Usual assumptions

- **③** Bits indiscernibility and independence: $f_i = w_H$.
 - *i.e.* f_i is a Hamming weight function.
- **2** Gaussian noise: $N_i \sim \mathcal{N}(0, \sigma_i^2)$.

For the sake of clarity, we can sometimes set: $\forall i \in \llbracket 0, d \rrbracket, \sigma_i = \sigma$.

イロト イポト イヨト イヨト 二日

How to Collect as Many Shares as Possible?

Initial Combination

- Nicknamed C_{device} (in reference to hardware; in software, it could also have been called C_{measure}).
- Not chosen by the attacker.

Final Combination

- Nicknamed C_{attacker} .
- Chosen by the attacker.

Total Combination

• Nicknamed
$$C_{\text{total}} \doteq C_{\text{attacker}} \circ C_{\text{device}}$$
.

3

- 4 週 ト - 4 三 ト - 4 三 ト

Notion of Attack Order

Depending the implementation is:

a) Sequential, *i.e.* software, or

b) Parallel, *i.e.* hardware,

exploitation of a first-order masking can be done either by:

- a) centered product (proved optimal in [PRB09], or
- b) squaring the leakage (called 2Z-DPA in [WW04]).

The common point is the *degree* 2 of the exploited leakage $C_{\text{total}}(\vec{L})$. We base ourselves on this notion in the sequel.

Leakage Polynomial Decomposition

• $C_{\text{total}}(\vec{L}) \doteq \sum_{\vec{\alpha} \in \mathbb{N}^{d+1}} a_{\vec{\alpha}} \cdot \vec{L}^{\vec{\alpha}}$, with $a_{\vec{\alpha}} \in \mathbb{R}$ (they can be null).

Polynomial Degree $d_{poly}(\mathcal{C}_{total}(\vec{L}))$

Usual definition for polynomials in ℝ^{d+1} of variables L
= (L₀, · · · , L_d),
d_{poly}(C_{total}(L)) = max_{α s.t. a_α≠0} ||α||₁ = max_{α s.t. a_α≠0} ∑_{i=0}^d α_i.

Algebraic Degree $d_{alg}(\mathcal{C}_{total}(\vec{L}))$ (*aka* multivariate degree)

- Similar definition for polynomials in $\mathbb{R}[L_0, \cdots, L_d] / \left(\prod_{i=0}^d L_i^2 L_i \right)$,
- α_i is counted as 1 if $\alpha_i > 0$, and as 0 otherwise.

Property

$$d_{\mathsf{poly}}(\mathcal{C}_{\mathsf{total}}(ec{L})) \geq d_{\mathsf{alg}}(\mathcal{C}_{\mathsf{total}}(ec{L})).$$

Attack Success Condition

• The attack succeeds if and only if the leakage meets the condition:

• $d_{\text{alg}}(\mathcal{C}_{\text{total}}(\vec{L})) = d + 1.$

Attack Success Necessary Condition

• The attack can succeed if the leakage meets this condition:

•
$$d_{\text{poly}}(\mathcal{C}_{\text{total}}(\vec{L})) = d+1.$$

Argument of the Talk

This last relationship might not be a necessary condition.

• Indeed, we will argue it is possible to have $d_{poly}(C_{total}(\vec{L})) > d_{alg}(C_{total}(\vec{L}))$

(4個) (4回) (4回) (5)

Presentation Outline

- Introduction
- 2 High-Order Masking
- High-Order CPA Immunity
 - 4 Leakage Squeezing [MGD11]
 - 5 Conclusions and Perspectives

3

HCI: High-Order CPA Immunity

Remark

•
$$d_{\mathsf{poly}}(\mathcal{C}_{\mathsf{total}}(ec{L})) \geq d_{\mathsf{alg}}(\mathcal{C}_{\mathsf{total}}(ec{L})).$$

- But for the attack to succeed, the first condition is on d_{alg}(C_{total}(L̃)):
 d_{poly}(L³₀) = 3, however, with a countermeasure (d > 0),
 - $d_{alg}(L_0^3) = 1 < d + 1 = 2$ [*i.e.* attack failure in 1st order masking].

HCI Definition

- HCI $\doteq \min \{i \in \mathbb{N} \text{ such that } \exists z, \mu^i (\mathcal{C}_{\mathsf{total}} | Z = z) \neq \mu^i (\mathcal{C}_{\mathsf{total}})\};$
- Idem $\forall i < \mathsf{HCI}, \forall z, \mu^i(\mathcal{C}_{\mathsf{total}} | Z = z) = \mu^i(\mathcal{C}_{\mathsf{total}})$ [moments].
- Idem $\forall i < \mathsf{HCI}, \forall z, k^i(\mathcal{C}_{\mathsf{total}} | Z = z) = k^i(\mathcal{C}_{\mathsf{total}})$ [cumulants].
- Because,

$$\forall z, \mu^i(\mathcal{C}_{total}|Z=z)$$
 are equal $\implies \mu^i(\mathcal{C}_{total}|Z=z) = \mu^i(\mathcal{C}_{total})$ (idem for the cumulants k^i).

3

- 4 回 ト - 4 回 ト

$\mathsf{HCI} = d_{\mathsf{poly}}(\mathcal{C}_{\mathsf{total}}(\vec{L}))$ for common SW/HW leakages

Software leakage archetype

[time extensive]

- Identity leakage: C_{device}(*L*) = *L*,
 Rigorously: C_{device}(*L*) = *L* − 𝔼(*L*).
- Attack strategy: $C_{\text{total}}(\vec{L}) = C_{\text{device}}(\vec{L})^{\vec{i}}$, with $\vec{i} \in (\mathbb{N}^*)^{d+1}$; $i = ||\vec{i}||_1 \ge d+1$ because $d_{\text{alg}}(C_{\text{total}}(\vec{L})) = \min\{i, d+1\}$,
 - and as small as possible since SNR $\leq \sigma^{-2i}$.

Hardware leakage archetype

[time intensive]

Sum leakage: C_{device}(*L*) = ∑_{i=0}^d L_i.
Rigorously: C_{device}(*L*) = ∑_{i=0}^d L_i - E(∑_{i=0}^d L_i).
Attack strategy: C_{total}(*L*) = C_{device}(*L*)ⁱ with *i* ∈ [[d + 1, +∞[]; *i* ≥ d + 1 because d_{alg}(C_{total}(*L*)) = min{*i*, d + 1},
and as small as possible since SNR ≤ σ⁻²ⁱ.

HO-CPA: Value-based Attacks

•
$$\rho(\mathcal{C}_{\text{total}}(\vec{L}), Z) = \frac{\text{Var}(\mathbb{E}(\mathcal{C}_{\text{total}}(\vec{L})|Z))}{\text{Var}(\mathcal{C}_{\text{total}}(\vec{L}))} = \frac{\text{Var}(\mathbb{E}(\mathcal{C}_{\text{device}}^{i}(\vec{L})|Z))}{\text{Var}(\mathcal{C}_{\text{total}}(\vec{L}))}$$
. [PRB09]

• By definition of HCI, the largest *i* such that $\rho(C_{\text{total}}(\vec{L}), Z) \neq 0$ is i = HCI.

MIA: Distribution-based Attacks

• There's no notion of order in MIA, but we have this theorem [LB10]:

$$I(\mathcal{C}_{\text{total}}(\vec{L}); Z) =$$

$$\sum_{i=0}^{+\infty} \frac{1}{2 \cdot i!} \sum_{z} P[z] \frac{\left(k_i(\mathcal{C}_{\text{total}}(\vec{L}) \mid Z = z) - k_i(\mathcal{C}_{\text{total}}(\vec{L}))\right)^2}{\left(\sigma_{\text{tot}}^2 + \sigma^2\right)^i}.$$
(1)

S. Guilley et al. (TELECOM ParisTech)

17 / 39

HO-CPA: Value-based Attacks

•
$$\rho(\mathcal{C}_{\text{total}}(\vec{L}), Z) = \frac{\text{Var}(\mathbb{E}(\mathcal{C}_{\text{total}}(\vec{L})|Z))}{\text{Var}(\mathcal{C}_{\text{total}}(\vec{L}))} = \frac{\text{Var}(\mu^{i}(\mathcal{C}_{\text{device}}(\vec{L})|Z))}{\text{Var}(\mathcal{C}_{\text{total}}(\vec{L}))}$$
. [PRB09]

• By definition of HCI, the largest *i* such that $\rho(C_{\text{total}}(\tilde{L}), Z) \neq 0$ is i = HCI.

MIA: Distribution-based Attacks

• There's no notion of order in MIA, but we have this theorem [LB10]:

$$I(\mathcal{C}_{\text{total}}(\vec{L}); Z) =$$

$$\sum_{i=0}^{+\infty} \frac{1}{2 \cdot i!} \sum_{z} P[z] \frac{\left(k_i(\mathcal{C}_{\text{total}}(\vec{L}) \mid Z = z) - k_i(\mathcal{C}_{\text{total}}(\vec{L}))\right)^2}{\left(\sigma_{\text{tot}}^2 + \sigma^2\right)^i}.$$
(1)

S. Guilley et al. (TELECOM ParisTech)

HO-CPA: Value-based Attacks

•
$$\rho(\mathcal{C}_{\text{total}}(\vec{L}), Z) = \frac{\text{Var}(\mathbb{E}(\mathcal{C}_{\text{total}}(\vec{L})|Z))}{\text{Var}(\mathcal{C}_{\text{total}}(\vec{L}))} = \frac{\text{Var}(\mu^{i}(\mathcal{C}_{\text{device}}(\vec{L})|Z))}{\text{Var}(\mathcal{C}_{\text{total}}(\vec{L}))}$$
. [PRB09]

• By definition of HCI, the largest *i* such that $\rho(C_{\text{total}}(\tilde{L}), Z) \neq 0$ is i = HCI.

MIA: Distribution-based Attacks

• There's no notion of order in MIA, but we have this theorem [LB10]:

$$I(\mathcal{C}_{\text{total}}(\vec{L}); Z) =$$

$$\sum_{i=\text{HCI}}^{+\infty} \frac{1}{2 \cdot i!} \sum_{z} \mathsf{P}[z] \frac{\left(k_i(\mathcal{C}_{\text{total}}(\vec{L}) \mid Z = z) - k_i(\mathcal{C}_{\text{total}}(\vec{L}))\right)^2}{\left(\sigma_{\text{tot}}^2 + \sigma^2\right)^i} .$$
(1)

S. Guilley et al. (TELECOM ParisTech)

HO-CPA: Value-based Attacks

•
$$\rho(\mathcal{C}_{\text{total}}(\vec{L}), Z) = \frac{\text{Var}(\mathbb{E}(\mathcal{C}_{\text{total}}(\vec{L})|Z))}{\text{Var}(\mathcal{C}_{\text{total}}(\vec{L}))} = \frac{\text{Var}(\mu^{i}(\mathcal{C}_{\text{device}}(\vec{L})|Z))}{\text{Var}(\mathcal{C}_{\text{total}}(\vec{L}))}$$
. [PRB09]

• By definition of HCI, the largest *i* such that $\rho(C_{\text{total}}(\vec{L}), Z) \neq 0$ is i = HCI.

MIA: Distribution-based Attacks

• There's no notion of order in MIA, but we have this theorem [LB10]:

$$I(\mathcal{C}_{\text{total}}(\vec{L}); Z) =$$

$$\sum_{i=\text{HCI}}^{+\infty} \frac{1}{2 \cdot i!} \sum_{z} P[z] \frac{\left(k_i(\mathcal{C}_{\text{total}}(\vec{L}) \mid Z = z) - k_i(\mathcal{C}_{\text{total}}(\vec{L}))\right)^2}{\left(\sigma_{\text{tot}}^2 + \sigma^2\right)^i} =$$

$$\mathcal{O}\left(\sigma^{-2 \times \text{HCI}}\right).$$
(1)

S. Guilley et al. (TELECOM ParisTech)

メロシ メヨン メヨン

Defender

- Increase $d_{alg}(\mathcal{C}_{total}(\vec{L}))$,
- because from the information theory standpoint, no attack can succeed w/o combining all the d + 1 shares.

Attacker

- Decrease $d_{\text{poly}}(\mathcal{C}_{\text{total}}(\vec{L}))$ (= HCI for power $\mathcal{C}_{\text{attacker}}$),
- because the SNR decreases exponentially:

$$\mathsf{Var}(\mathcal{C}_{\mathsf{total}}(ec{\mathcal{L}})|ec{\mathcal{S}}) \geq \sigma^{2d_{\mathsf{poly}}(\mathcal{C}_{\mathsf{total}}(ec{\mathcal{L}}))}$$

Presentation Outline

- Introduction
- 2 High-Order Masking
- 3 High-Order CPA Immunity
- 4 Leakage Squeezing [MGD11]
 - 5 Conclusions and Perspectives

n = 4, d = 1, HCI = 2

n = 4, d = 2, HCI = 3

n = 4, d = 3, HCI = 4

n = 4, d = 1, HCI = 2

n = 4, d = 2, HCI = 3

$$n = 4, d = 3, HCI = 4$$

Goal

- Save masks and/or
- reduce the attacker's SNR.

Principle

- Replace S_i by $B_i(S_i)$,
- when B_i is linear, we note $B_i : X \mapsto M_i \times X$, with $M_i \in (\mathbb{F}_2^n)^2$.

Hamming Weight Leakage is Important

- The leakage squeezing works only because $f_i = w_H$
 - at least approximately;
- Prior characterization with stochastic model increases the confidence.

Because it adapts to both Hamming weight and distance [MM12]

- Hamming weight: $f_i(X) = w_H(B(X))$.
- Hamming distance: $\tilde{f}_i(X, X') = w_H(B(X) \oplus B(X')) = w_H(B(X \oplus X')) = f_i(X \oplus X') = f_i(\Delta X).$

The Big Picture

- Shares make up the masking, that is enhanced by
- indiscernibility of the bits (*i.e.* hiding).

$$n = 4, d = 1, HCI = 2$$

Leakage squeezing:

$$n = 4, d = 1, HCI = 3$$

$$\begin{array}{c} d_{\text{alg}}(\mathcal{C}_{\text{total}}): & \text{attack impossible} \ & \text{attack possible in IT} \\ \hline \text{HCI:} & \hline \text{HO-CPA impossible} \ & \text{HO-CPA possible} \\ \hline & & \text{HO-CPA impossible} \ & \text{HO-CPA possible} \\ \hline & & \text{HO-CPA impossible} \ & \text{HO-CPA possible} \\ \hline & & \text{I} & \text{I} & \text{I} & \text{I} \\ \hline & & \text{I} & \text{I} & \text{I} & \text{I} \\ 0 & \cdots & d & d+1 & d+2 & d+3 \end{array} \right) i \qquad M_2 = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \\ \hline & & 1 & \text{I} & \text{I} & 0 \\ q_{alg}(\mathcal{C}_{o_{tail}}) & 2 & \text{I} \\ q_{alg}(\mathcal{C}_{o_{tail}}) & 2 & \text{I} \\ 2 & 3 & \text{I} \\ \hline & & \text{C}_{\text{total}} = (\ell_0(S_0) + \ell_1(M_2 \times S_1))^2 \\ \hline & \mathcal{C}_{\text{total}} = (\ell_0(S_0) + \ell_1(M_2 \times S_1))^2 \end{array}$$

A 10

э

Leakage squeezing:

$$n = 4, d = 1, HCI = 4$$

Problem Statement for d = 1 Whatever n

Specification

• $\forall i < \text{HCI}, \ \mu^i(\mathcal{C}_{\text{device}}(\vec{L})|Z = z)$ must not depend on z.

In Hardware

 $(S_0,S_1)=(Z\oplus M,M)$

- $(w_H(z \oplus M) + w_H \circ B(M))^i = \sum_{j=0}^i {i \choose j} w_H(z \oplus M)^i \cdot w_H \circ B(M)^{j-i}.$
- Idem: $\forall p, q$ such that p + q < HCI, $\mathbb{E}(w_H(z \oplus M)^p \cdot w_H \circ B(M)^q)$ does not depend on z.

Theorem

• Idem:
$$\widehat{w_H^p}(a) \cdot \widehat{w_H \circ B^q}(a) = \operatorname{cst} \times \delta(a).$$

Proof

Fourier transform:
$$\hat{f}(a) \doteq \sum_{x \in \mathbb{F}_2^n} f(x)(-1)^{x \cdot a}$$

• Fourier of a constant (resp. convolution) is a Dirac (resp. product).

Property

•
$$\widehat{w_H^p}(a) = 0 \iff w_H(a) > p.$$

Problem Equivalent Formulation

• Find B such that $\forall a \neq 0, w_H(a) \leq p \Longrightarrow \widetilde{w_H \circ B^q}(a) = 0.$

Some Linear Solutions

HCI = 2	HCI = 3	HCI = 4
$M_1 = Id_4$	$M_2 = \begin{pmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$	$M_3 = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$
$M_1^{-1} = Id_4$	$M_2^{-1} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$	$M_3^{-1} = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$

S. Guilley et al. (TELECOM ParisTech)

Presentation Outline

- Introduction
- 2 High-Order Masking
- 3 High-Order CPA Immunity
- 4 Leakage Squeezing [MGD11]
- 5 Conclusions and Perspectives

Prior Belief

- If d masks are used, then:
 - combining d + 1 samples (software) or
 - raising the traces at power d+1 (hardware)
- suffice to break the concealed keys.

Leakage Squeezing

- If d masks are used, then:
 - combining HCI > d + 1 samples (software) or
 - raising the traces at power HCI > d + 1 (hardware)
- are necessary to break the key via the traces.

Attack Performance is Reduced

HO-CPA of order HCI are required,

•
$$MI = \mathcal{O}(\sigma^{-2 \cdot HCI})$$

- 4 同 6 4 日 6 4 日 6

Perspectives

Non-linear bijections B:

- In distance: problem is solved [MGCD12]
- In values: open issue
- How to adapt the *leakage squeezing* to a leakage model different than $f_i = h_W$ (*i.e.* the Hamming weight),
- for instance characterized by a stochastic approach [SLP05]: $f_i(X) = \sum_{\vec{i} \in \mathbb{F}_2^n} \beta_{\vec{i}} X^{\vec{i}}.$
- HCI depends on n... Does focusing on smaller parts help?
- High-order leakage squeezing

- 4 @ > - 4 @ > - 4 @ >

Leakage Squeezing — Defeating Instantaneous (d+1)th-order Correlation Power Analysis with Strictly Less Than d Masks

> Sylvain Guilley, Claude Carlet, Houssem Maghrebi, Jean-Luc Danger and Emmanuel Prouff

> > TELECOM ParisTech, Univ. Paris 8 & ANSSI

Wednesday June 20th 2012, 10th CryptArchi Workshop — Château de Goutelas, Marcoux

References I

Thanh-Ha Le and Maël Berthier.

Mutual Information Analysis under the View of Higher-Order Statistics. In Isao Echizen, Noboru Kunihiro, and Ryôichi Sasaki, editors, *IWSEC*, volume 6434 of *LNCS*, pages 285–300. Springer, 2010.

Houssem Maghrebi, Sylvain Guilley, Claude Carlet, and Jean-Luc Danger. Optimal First-Order Masking with Linear and Non-Linear Bijections.

In *AFRICACRYPT*, LNCS. Springer, July 10-12 2012. Al Akhawayn University in Ifrane, Morocco.

Houssem Maghrebi, Sylvain Guilley, and Jean-Luc Danger. Leakage Squeezing Countermeasure Against High-Order Attacks. In WISTP, volume 6633 of LNCS, pages 208–223. Springer, June 1-3 2011. Heraklion, Greece. DOI: 10.1007/978-3-642-21040-2.14.

Amir Moradi and Oliver Mischke.

How Far Should Theory be from Practice? Evaluation of a Countermeasure. In CHES, September 9-12 2012. Leuven, Belgium.

Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical Analysis of Second Order Differential Power Analysis. *IEEE Trans. Computers*, 58(6):799–811, 2009.

Matthieu Rivain and Emmanuel Prouff.

Provably Secure Higher-Order Masking of AES.

In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume 6225 of LNCS, pages 413-427. Springer, 2010.

< ロト < 同ト < ヨト < ヨト

References II

Werner Schindler, Kerstin Lemke, and Christof Paar.

A Stochastic Model for Differential Side Channel Cryptanalysis.

In LNCS, editor, *CHES*, volume 3659 of *LNCS*, pages 30–46. Springer, Sept 2005. Edinburgh, Scotland, UK.

Jason Waddle and David Wagner.

Towards Efficient Second-Order Power Analysis.

In *CHES*, volume 3156 of *LNCS*, pages 1–15. Springer, 2004. Cambridge, MA, USA.

(日) (同) (三) (三)