PUF on a Simple Microcontroller

Josef Hlaváč, Mikhail Platonov, Róbert Lórencz

Faculty of Information Technology Czech Technical University in Prague

Introduction & motivation

- Physical Unclonable Functions (PUF)
 - PUF output specific to a particular piece of HW
 - relies on various (parasitic) effects that are (hopefully) impossible to reproduce
 - "Hot" research topic in recent years
 - Various uses in security
 - Anti-counterfeiting
 - Authentication
 - Identification

Problem statement

- Problem statement:
 - Most of current PUF research focuses on FPGA
 - <u>Can we implement PUF on a simple AVR-series</u> <u>microcontroller?</u>
- Approach
 - The most obvious option: Initial SRAM contents

Initial tests

- Is the idea plausible?
 - ATtiny2313
 - 8-bit AVR series microcontroller
 - 128 bytes of SRAM
- Results
 - 147 (14%) zero bits
 - 81 (8%) random bits
 - 796 (78%) one bits

Memory map

More tests

- How long does it take to "reset" the SRAM?
 - Influence of power-off time?
 - Influence of previous content?
- Does the pattern really differ in different chips?
 - Let's try with more RAM, too

More tests

- Setup for more tests
 - ATmega1284
 - 8-bit AVR mega series microcontroller
 - 16384 bytes of SRAM
 - 10 devices

Influence of previous content

- Initial test
 - ATtiny2313
 - SRAM filled with 0, 10 minutes off: 181 zeros, 755 ones
 - SRAM filled with 1, 10 minutes off: 186 zeros, 757 ones
 - \rightarrow not much difference

Influence of previous content

- What others say
 - Retained data in SRAM lost after few ms [3,4]

VS.

- Measurable effect even after tens of mins [2]
- More tests
 - ATmega1284
 - SRAM filled with 0 (since 1 is much more common)
 - Various power-off times, from 1 s to 1 hour
 - 10 chips, all with the same datecode

Stable bits vs. power-off time

Results for individual chips

Bits vs. power-off time

Averaged results for all chips - only interesting area shown

Influence of previous content

• Results

- No influence detected
 (but the results are not quite conclusive)
- "Step" in between 30 and 60 secs is likely caused by the experiment setup
- SRAM seems to be biased towards "1" in AVR devices

Differences among chips

 Critical question: Is the memory pattern really unique for each chip?

Differences among chips

- In one chip:
 - Stable zeros: 13% (min) / 20% (avg) / 25% (max)
 - Stable ones: 35% (min) / 61% (avg) / 67% (max)
 (measurement error suspected in one chip)
- Two different chips:
 - Stable zeros: 1.8% (min) / 4.0% (avg) / 6.1% (max)
 - Stable ones: 20% (min) / 37% (avg) / 45% (max)

("stable" = stable bits at same locations in both chips) (measured across all possible pairs)

Memory map - one chip

Memory map - two chips

Stable 0 / stable 1 in various cases

Stable 0 / stable 1 in various cases

TODO a.k.a. Future work

- More experiments needed
 - Long-term aging, "burn-in" effects
 - Supply voltage
 - Temperature
 - Structural considerations
- Suggest a good way of using the PUF
 - Inspiration can be drawn from [1], ...

Conclusion

 SRAM in the AVR series microcontrollers <u>can</u> be used to construct a PUF

• Preliminary results presented

• More work needed ③

References

- [1] Holcomb, D.E. et al.: Power-up SRAM state as an Identifying Fingerprint and Source of True Random Numbers. IEEE Trans. on Computers, vol. 57, no. 11, 2008.
- [2] Colopy R., Chopra J.: SRAM Characteristics as Physical Unclonable Functions. A Major Qualifying Project Report, no. MQP-BS2-0803, Worcester Polytechnic Institute, 2009.
- [3] Guajardo J. et al.: FPGA Intrinsic PUFs and Their Use for IP Protection. In: Proceedings of CHES 2007, LNCS 4727, pp. 63–80.
- [4] Skorobogatov S.: Low temperature data remanence in static RAM. Technical report No. 536. Computer Laboratory, University of Cambridge, 2002.