RUHR-UNIVERSITÄT BOCHUM

# **Glitch-Free Implementation of Masking in Modern FPGAs**


Amir Moradi, <u>Oliver Mischke</u> Horst Görtz Institute for IT-Security





EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung

#### Cryptarchi 2012, Chateau de Goutelas, France, 20/06/2012





#### RUB

### Outline

- Background
- Problems
- Our Solution
- Evaluation
- Summary

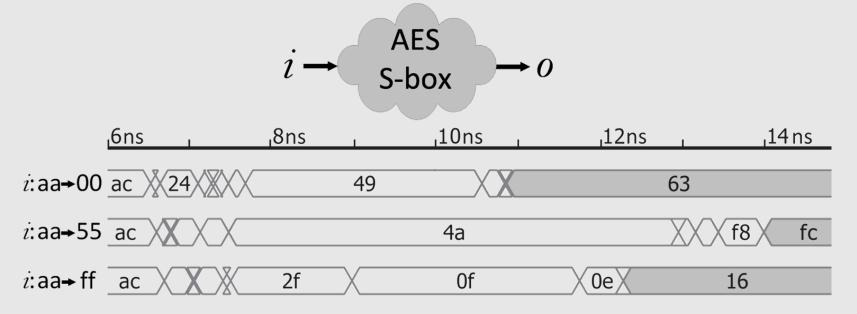
## **Background SecureIP Project**

- Objective is to develop and evaluate cryptographically and physically secure IP cores for FPGA-based systems
- Consortium of academic and industrial (SME) partners
  - Ruhr-University Bochum, Hardware Security Group
  - ESCRYPT Embedded Security
- Duration of 3 years (Sep. 2011 Aug. 2014)
- Publically funded by the European Commission and the German federal state NRW (IKT.NRW program)
- Further information under <u>https://www.secure-ip.org</u>



EUROPÄISCHE UNION Investition in unsere Zukunft Europäischer Fonds für regionale Entwicklung




# Background

- Hardware countermeasures against power analysis
  - Many solutions from algorithmic countermeasures to special logic styles ((i)MDPL, WDDL, ...)
  - But what about an FPGA?
    - Hardware is fixed -> mostly algorithmic countermeasures
    - Masking schemes: additive, multiplicative, affine
    - Problem of masking in hardware not solved!
      - -> Glitches!

#### **Problem: Glitches!**

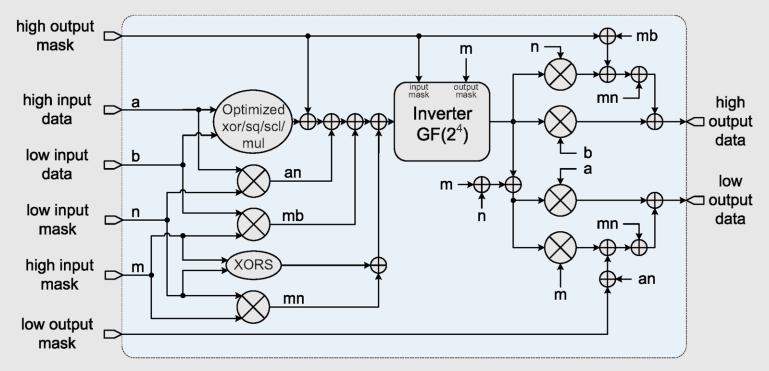
- Output of gates are not simply switching their signal level once
- Different arrival time causes multiple changes
- Glitches are passed to the next element

-> even more glitches!



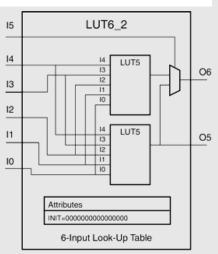


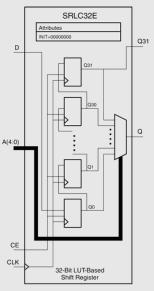
# How to solve the problem of glitches?

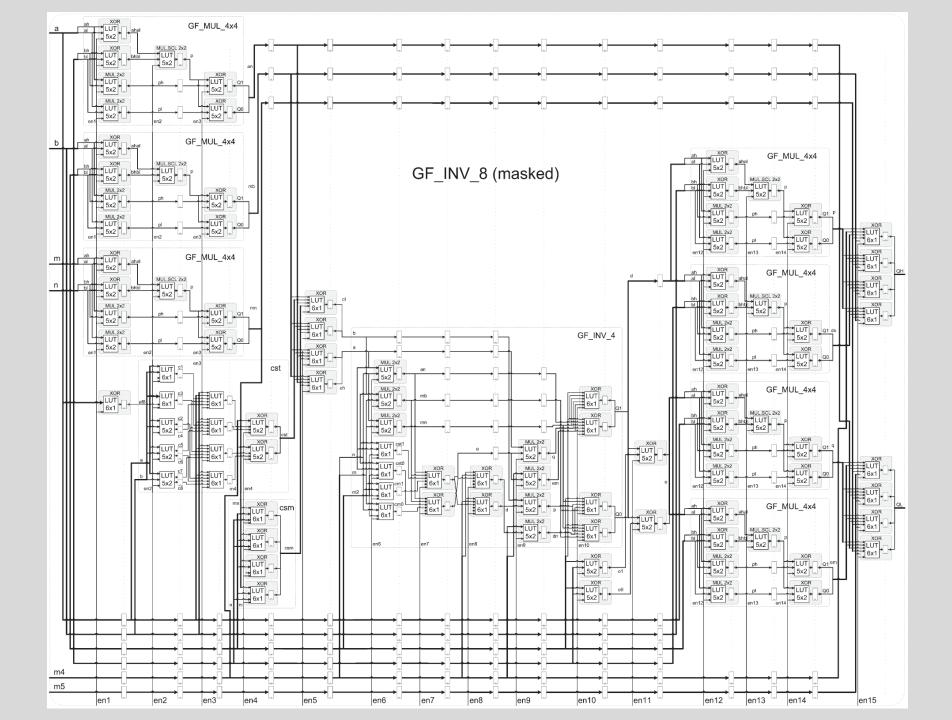

- Available so far:
  - Schemes which are resistant to glitches
    - TI (Nikova et al., ICICS 2006&2008/JoC 2/2011)
      - Not trivial, esp. for larger Sboxes
      - AES version could not yet be made
      - All 3x3 and 4x4 Sboxes at CHES2012
    - MPC (Prouff/Roche, CHES 2011)
      - Large time and area overhead
      - Not practically evaluated yet
- Is there another way for FPGAs? YES!

# **Our Solution**

- Let's try a different approach:
  - Don't try to achieve glitch resistance, avoid glitches!
  - Use most compact masked AES Sbox to date (Canright/Batina)
  - Manually map modules to FPGA ressources
  - Add enable signal/registers to separate each LUT stage


#### **Masked Sbox**


- Canright/Batina (ACNS 2008), corrected version: eprint Archive Report 2009/011
- Tower field approach, additive masking

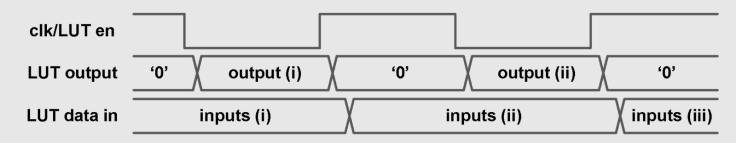



#### **FPGA Ressources**

- Many-to-one Look-Up-Tables (LUTs)
- Storage bit is selected by MUXs
- One input is used as enable
  - Output is forced to zero if bit is 1
  - Does it matter which bit is used?
    - Yes!
  - Use first MUX stage after storage bits
    - Bit is IO (deduced from SRLC32E Arch.)
  - Fix PIN assignments by constraint!








# **Design Profiles**

- 6 exemplary designs on SASEBO GII:
  - (1) Original with synthesizer optimization
  - (2) Original without optimizations
  - (3) Our modified design, no enables, no regs/pipelining
  - (4) No regs/pipelining, but enabling all stages sequentially
  - (5) Regs/pipelining, but always enabled
  - (6) Regs/pipelining and active low enable
    - Utilizes special routing of the clock tree

# **Timing of Profile 6**

• Timing behaviour of LUT in- and output for Profile 6



- Active low enable tied to clock signal
- Clock high: output is forced to 0, input becomes stable
- Clock low: stable input is distributed
- Rising edge clock: output forced to zero before new inputs arrive at the LUT input

### **Synthesis results**

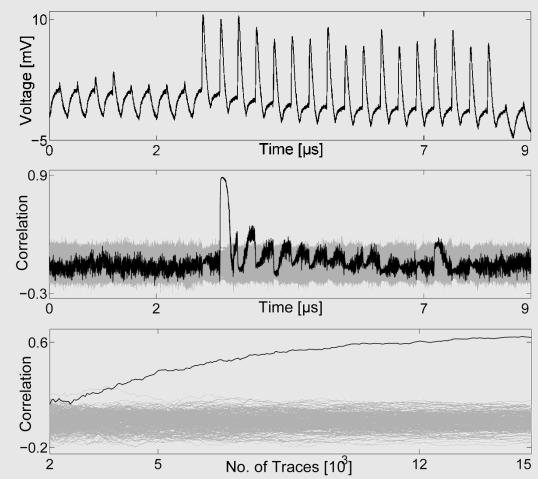
| Profile | Max. Freq. | #LUTs | #FFs | Latency<br>(#clocks)          | Throughput<br>(16 Inv. /s) |
|---------|------------|-------|------|-------------------------------|----------------------------|
| 1       | 105.519MHz | 99    | 0    | 0                             | 6 594 937                  |
| 2       | 56.504MHz  | 244   | 0    | 0                             | 3 531 500                  |
| 3       | 88.300MHz  | 100   | 0    | 0                             | 5 518 750                  |
| 4       | 641.026MHz | 100   | 0    | 30                            | 1 335 471                  |
| 5       | 641.026MHz | 100   | 649  | 15 ( <i>pipe</i> ' <i>d</i> ) | 20 678 258                 |
| 6       | 320.513MHz | 100   | 649  | 15 ( <i>pipe'd</i> )          | 10 339 129                 |

- Comparable LUT requirements with unsecure versions
- Higher troughput of secure profile 6 is paid by large amount of registers

#### **Evaluation**

• Single re-used Sbox instance

-> perfect for correlation collision attacks (Moradi et al., CHES 2010/Eurocrypt 2012)


- Focus on the 3 most interesting profiles:
  - (3) Our modified design, no enables, no regs/pipelining -> big combinational circuit
  - (5) Regs/pipelining, but always enabled -> hinder glitch propagation
  - (6) Regs/pipelining and active low enable -> no glitches and fast execution

# **Profile 3: Combinational Circuit**

• Full SubBytes takes 16 clock cycles

 Very high correlation after 50k measurements

 5k measurements are sufficient





# **Profile 5: Pipelining**

 Full SubBytes takes 31 clock cycles

- Depicted successful result after 20M measurements
- Already 8M measurements are required

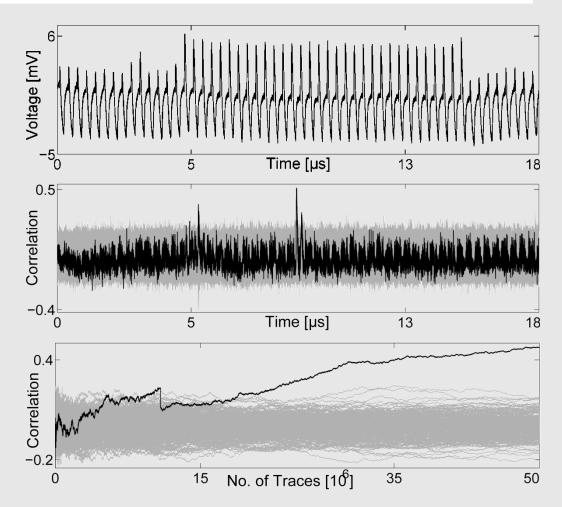




# **Profile 6: Pipelining and Special Enable**

6

• Full SubBytes takes 31 clock cycles again


- First order attack no longer successful
- Outgoin
  <
- Even 50M measurements are not giving any results



# **Profile 6: 2nd Order Attack**

 Full SubBytes also takes 31 clock cycles

- Depicted successful result after 50M measurements
- Leakage exploitable after 25M measurements



### Summary

- What have we done:
  - Mapped highly optimized compact masked ASIC Sbox to efficiently use the available FPGA resources
  - Elimination of glitches by specially routed enable signal
  - High throughput by pipelining
  - Applicable to all modern Xilinx FPGAs (Virtex 5 onwards, 6 Input LUTs)
  - No first-order leakage after 50 million measurements
  - Second order leakage exploitable using 25 million traces
    - -> similar 2nd order leakage as in reported TI implementations but much smaller
  - Source code available for evaluation: <u>http://www.emsec.rub.de/research/publications</u>

RUHR-UNIVERSITÄT BOCHUM

# Thanks! Any questions?

Amir Moradi, <u>Oliver Mischke</u> Horst Görtz Institute for IT-Security

Cryptarchi 2012, Chateau de Goutelas, France, 20/06/2012



RUB