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Ideal RNGs

Even with maximum knowhow, most powerful 
technical equipment and unlimited computational 
power an attacker has no better strategy than 
“blind” guessing (brute force attack).

Guessing n random bits costs 2n-1 trials in average.
The guess work remains invariant in the course of 

the time.
An ideal RNG is a mathematical construct.
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Classification of ‘real-world’ RNGs

RNG

deterministic non-deterministic (true)

pure hybrid

pure hybridpure hybrid

physical non-physical
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Abbreviations

 DRNG: Deterministic Random Number Generator
 PTRNG: Physical Random Number Generator
 NPTRNG: Non-Physical Non-Deterministic 

Random Number Generator (Example:  
/dev/random (Linux))
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Security Requirements (I)

 R1: The random numbers should not show any 
statistical weaknesses.

 R2: The knowledge of sub-sequences of random 
numbers shall not allow to practically compute 
predecessors or successors or to guess them with 
non-negligibly larger probability than without 
knowledge of these sub-sequences. (backward 
secrecy and forward secrecy)
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Security Requirements (II)

R3: It shall not be practically feasible to compute       
preceding random numbers from the internal state 
or to guess them with non-negligibly larger 
probability than without knowledge of the internal 
state. (enhanced backward secrecy)

R4: It shall not be practically feasible to compute 
future random numbers from the internal state or to 
guess them with non-negligibly larger probability 
than without knowledge of the internal state. 
(enhanced forward secrecy) 

NOTE: R3 and R4 are DRNG-typical requirements.
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Pure DRNG (schematic design)

s0 (seed)

internal 
state sn

ψ : output function
φ : state transition function

sn+1:= φ(sn)
φ

rn:=ψ(sn)

random 
number

ψ
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Security aspects

DRNGs can only provide computational security, 
which might get lost in the course of the time.

The state transition function and the output function 
are usually composed of cryptographic primitives.

The security of a DRNG grounds on the 
cryptographic properties of its primitives. 
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Physical RNG  (schematic design)

noise
source

analog

raw random numbers
(a.k.a. das random 
numbers)

digital

internal r.n.

algorithmic
postprocessing

(optional; with or 
without memory)

external r.n. 

external interface

buffer

(optional)
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Evaluation of the PTRNG design

Goal: Estimate the entropy per internal random bit
Note: Entropy is a property of random variables 

and not of the values that are assumed by these 
random variables (here: random numbers).

 In particular, entropy cannot be measured as 
temperature, voltage etc.

General entropy estimators do not exist. 
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Stochastic model (I)
 Ideally, a stochastic model specifies a family of 

probability distributions that contains the true 
distribution of the internal random numbers. 

 At least, the stochastic model should specify a 
family of distributions that contain the distribution 

 of the raw random numbers or
 of ‚auxiliary‘ random variables 

if this allows to estimate the increase of entropy 
per internal random number. 

 The specified family of probability distributions 
may depend on one or on several parameters.
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Example 1: Coin tossing (I)
 PTRNG: A single coin is tossed repeatedly. 

"Head" (H) is interpreted as 1, "tail" (T) as 0.
 Stochastic model:
The observed sequence of random numbers (here: 

heads and tails) are interpreted as values that are 
assumed by random variables X1,X2,… .

The random variables X1,X2, … are assumed to be  
independent and identically distributed.
(Justification: Coins have no memory.)

p : = Prob(Xj = H)  [0,1] with unknown parameter p
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Example 1: Coin tossing (II)

Entropy estimation (based on the stochastic model)

 Observe a sample x1,x2, …, xN
Set  p := #j  N | xj = H / N 

 To obtain an estimate  H(X1) for H(X1) 
substitute p into the entropy formula:
H(X1) = - ( p* log2 (p) + (1-p) * log2(1-p))

~
~

~ ~~ ~~
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Stochastic model (II)
 For physical RNGs the justification of the 

stochastic model is usually more difficult and 
requires more sophisticated arguments. Ideally, it 
should be confirmed by experiments.

 The parameter(s) are estimated first, and out of it 
an entropy estimate is computed (cf. Example 1). 
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PTRNG in operation: Security measures

goal

shall detect a total breakdown of the 
noise source (almost) immediately; r.n.’s, 
which have been generated after that 
instant, shall not be output

tot-test

shall ensure the functionality of the 
physical RNG when it is started

startup test

shall detect non-tolerable weaknesses
of the random numbers sufficiently soon

online test
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Security evaluation

A trustworthy security evaluation should verify the 
suitability of

 the RNG design

 the online test, the tot test and the startup test. 
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Common Criteria (CC)

 provide evaluation criteria for IT products which 
shall permit the comparability between 
independent security evaluations. 

 A product or system that has successfully been 
evaluated is awarded with an internationally        
recognized IT security certificate.

 The Common Criteria and the corresponding 
evaluation manuals do not specify evaluation 
criteria for random number generators. 
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AIS 20 and AIS 31 (I)

In the German evaluation and certification scheme the 
evaluation guidance documents

AIS 20: Functionality Classes and Evaluation 
Methodology for Deterministic Random Number 
Generators
AIS 31: Functionality Classes and Evaluation 
Methodology for Physical Random Number 
Generators

have been effective for more than 10 years.
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AIS 20 and AIS 31 (II)

 AIS 20 and AIS 31 are technically neutral. They 
define several functionality classes of RNGs. 

 The applicant for a certificate has to give evidence 
that the RNG meets the specified requirements.

 The AIS 20 and AIS 31 have been well-tried in 
many product evaluations. 

 A reference implementation of the applied 
statistical tests can be found on the BSI website.
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AIS 20 and AIS 31 (III)

 In 2011 the mathematical-technical references of 
AIS 20 and AIS 31 have been updated.

 Some new functionality classes have been 
introduced.

 The mathematical background is explained, and 
several examples are discussed.
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Functionality classes

DRNGs           PTRNGs        NTRNGs

NTG.1PTG.1

PTG.3

PTG.2

DRG.1

DRG.2

DRG.4

DRG.3
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AIS 20 and AIS 31: 
Old and New (a coarse comparison)

New 
functionality classes

Old 
functionality classes

DRG.1 K2 
+ forward secrecy

DRG.2 K3
DRG.3 K4
DRG.4 no pendant
PTG.1 P1
PTG.2 P2
PTG.3 no pendant
NTG.1 no pendant
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New AIS 20 + AIS 31 (DRNGs)

Functionality class DRG.2
 Goals: good statistical properties, backward 
secrecy, forward secrecy
Generic Requirements (simplified)
 large seed entropy
 cryptographic state transition function and output 
function
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New AIS 20 + AIS 31 (DRNGs)

Functionality class DRG.3
 Goals: good statistical properties, backward
secrecy, forward secrecy, enhanced backward
secrecy
Generic Requirements (simplified)
 large seed entropy
 cryptographic state transition function and output
function
 The state transition function is one-way
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DRG.2 vs. DRG.3 (I)

The functionality class DRG.3 ensures the secrecy 
of old random numbers even if the internal state 
has been compromised.

This is an additional security measure, which 
relevant if the DRNG is operated in a potentially 
insecure environment.

DRG.3 demands a one-way state transition 
function, which may be costly (e.g., for smart cards)
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DRG.2 vs. DRG.3 (II)

 If 
 the previous random numbers need not  be 

protected (zero-knowledge proofs, openly 
transmitted challenges etc.),

 the device is operated in a secure environment, or
 if one trusts unconditionally in the security of the 

device ( protection of the internal state)
it might be an option to use a DRG.2-conformant 
DRNG .
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New AIS 20 + AIS 31 (DRNGs)

Functionality class DRG.4
 Goals: good statistical properties, backward
secrecy, forward secrecy, enhanced forward
secrecy, enhanced forward secrecy
Generic Requirements (simplified)
 large seed entropy
 cryptographic state transition function and output
function
 The state transition function is one-way
 supply of fresh entropy (regularly, upon request, …)
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DRG.3 and DRG.4

Compared to DRG.3 the class DRG.4 provides an 
additional security anchor.
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New AIS 20 + AIS 31 (PTRNGs)

Functionality class  PTG.2
 Goals: good statistical properties, entropy per 
internal random number is sufficiently large
 Generic Requirements (simplified):
 internal random numbers pass statistical tests
 stochastic model of the noise source
 effective online tests
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New AIS 20 + AIS 31: PTRNGs 
Functionality class PTG.3
 Goals: good statistical properties, entropy per 
internal random number is sufficiently large, 
computational security even after a total breakdown 
of the noise source
 Generic Requirements (simplified):
 internal random numbers pass statistical tests
 stochastic model of the noise source
 effective online tests
 cryptographic postprocessing with memory (DRG.3-

conformance with cryptographic output function)
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PTG.2

 The internal random numbers may have a small entropy 
defect (bias, correlation).

 For many applications this should not play a role: symmetric 
session keys, challenges etc.

 For certain applications an attacker might (at least 
theoretically) be able to combine information on several 
random numbers  (e.g., for ephemeral keys for DSA or 
ECDSA), preventing at least information-theoretical security 
statements. 

 Even if no concrete attacks are known it seems to be 
recommendable to use PTG.3-conformant RNGs (at least)
for those applications.
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PTG.3

PTG.3-conformant RNGs provide two security 
anchors (unlike PTG.2- RNGs or DRG.3-RNGs). 

The cryptographic postprocessing algorithm 
ensures computational security even after a total 
breakdown of the noise source (provided that the 
noise source has worked for at least some period).

PTG.3 is the highest functionality class. PTG.3-
conformant RNGs are appropriate for all  
cryptographic applications.
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DRG.4 and PTG.3

Unlike PTG.3 the class DRG.4 allows to ‘extend’ 
entropy.

 (PTG.3) One may expect that the combination of an 
analog part and the cryptographic postprocessing
algorithm provides stronger resistance against side-
channel attacks and fault attacks than purely physical 
or purely deterministic RNGs.
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New AIS 20 + AIS 31: NPTRNGs 

Functionality class NTG.1
 Goal: good statistical properties, entropy per 
internal random number is sufficiently large
Generic Requirements (simplified) :
 internal random numbers pass statistical tests
 reliable entropy estimator for the raw bit strings
 postprocesing algorithm with memory, one-way 

property
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Federal Office for Information Security 
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Werner Schindler
Godesberger Allee 185-189
53175 Bonn, Germany

Tel:  +49 (0)228-9582-5652
Fax: +49 (0)228-10-9582-5652

Werner.Schindler@bsi.bund.de
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