# Magnitude Squared Coherence based SCA

#### S. Tiran, A. Dehbaoui, P.Maurine

CryptArchi 2012

#### June 20, 2012







Is working with one sample at a time optimal?
 ⇒ Maybe not?

- Are there tools to work with several consecutive samples?
- $\Rightarrow$  Magnitude Squared Coherence

Magnitude Squared Coherence Squared Coherence ANalysis Experimental results

(1)

# What is MSC?

Magnitude Squared Coherence :

- is a signal processing tool that returns real values between 0 and 1 to indicate how well two time domain signals x(t) and y(t) match one with the other.
- 2 works in the frequency domain.

Magnitude Squared Coherence

$$MSC_{x,y}(f) = \frac{|P_{xy}(f)|^2}{P_{xx}(f) * P_{yy}(f)}$$

With :

- $P_{xy}$  the cross-spectral density between x and y
- $P_{xx}$  and  $P_{yy}$  the autospectral density of x and y

Magnitude Squared Coherence Squared Coherence ANalysis Experimental results

# Illustration of the use of MSC

Result of the coherence between two signals sampled at 20GHz.





Magnitude Squared Coherence Squared Coherence ANalysis Experimental results

# HD model



Attacks of EM curves of a DES implementation on a FPGA

|             | Success Rate | 10%  | 20%  | 40%  | 60%  | 80%  | 100% |
|-------------|--------------|------|------|------|------|------|------|
|             | CPA          | 775  | 1075 | 1525 | 2150 | 4475 | 5000 |
| time domain | DPA          | 850  | 1175 | 1750 | 2800 | 4250 | 4975 |
|             | MIA          | 1650 | 1850 | 2450 | 2900 | 3300 | 4150 |
|             | MIA mb       | 950  | 1150 | 1250 | 1600 | 1750 | 2100 |
| frequency   | CPFA         | 1110 | 1205 | 1410 | 1630 | 2025 | 3150 |
| domain      | SCAN         | 260  | 320  | 430  | 660  | 910  | 1725 |

Table 1 : Number of processed traces vs Success Rate (HD model)

- frequency domain analyses > time domain analyses
- SCAN requires less than 2k traces

Magnitude Squared Coherence Squared Coherence ANalysis Experimental results

#### Results of sbox 3 at 1000 curves, HD model



Working with several samples at a time filters ghost peaks.

Magnitude Squared Coherence Squared Coherence ANalysis Experimental results

#### HW model

|             | Success Rate | 10%  | 20%  | 40%  | 60%  | 80%  | 100% |
|-------------|--------------|------|------|------|------|------|------|
|             | CPA          | fail | fail | fail | fail | fail | fail |
| time domain | DPA          | fail | fail | fail | fail | fail | fail |
|             | MIA          | fail | fail | fail | fail | fail | fail |
|             | MIA mb       | 3550 | 3700 | 3900 | 4350 | 4550 | 4900 |
| frequency   | CPFA         | fail | fail | fail | fail | fail | fail |
| domain      | SCAN         | 1510 | 1800 | 2270 | 2690 | 3220 | 4600 |

Table 2 : Number of processed traces vs Success Rate (HW model)

 $\Rightarrow \text{SCAN}$  and MIA mb are the only one to recover the key with only 5000 curves

Introduction SCAN MSC based analyses Conclusion Conclusion

#### Results of sbox 3 at 5000 curves, HW model



Magnitude Squared Coherence Squared Coherence ANalysis Experimental results

# $\bullet$ Did we use optimally MSC?

 $\Rightarrow {\sf Surely not}.$ 

Coher subsets Analyses Experimental results

#### New approach



- $\Rightarrow \frac{n-1}{2}$  times as much informers as in a classical attack.
  - $\textcircled{0} 500 \text{ messages} \rightarrow 124750 \text{ informers}$
  - 2 1000 messages  $\rightarrow$  499500 informers

#### Working with pair of messages :

$$b_i(m_p) 
ightarrow \Delta b_i = |b_i(m_p) - b_i(m_q)|$$

New goal  $\rightarrow$  analyse coher distributions to retrieve the key

Coher subsets Analyses Experimental results

#### Mean and Variance analyses



Magnitude Squared Coherence based SCA

Coher subsets Analyses Experimental results

# Correlation analysis



Let us assum that the expectations  $E(C_{k*}|\sum_i \Delta b_i = q)$ are decreasing with the increasing value of q.

Pearson Correlation :

- returns a value between -1 and 1
- estimates the linear dependence between two variables

# Correlation Analysis Formula $\max_{k*\in K} \{Correlation(Coher, q)\}$ (4) S. Tiran, A. Debbaqui, P. Maurine Magnitude Squared Coherence based SCA

Coher subsets Analyses Experimental results

# KS test based analysis



#### Kolmogorov-Smirnov test

The KS test is a non parametric test to compare the distributions of two samples.

Coher subsets Analyses Experimental results

# $\mathbb{E}$

#### CDF formula

$$F_{1,n}(x) = \frac{1}{n} \sum_{i=1}^{n} I\{x_i \le x\}$$
 (5)

#### KS test formula

$$\sqrt{\frac{nm}{n+m}} \sup_{x} |F_{1,n}(x) - F_{2,m}(x)|$$
 (6)

#### KS test based analysis

$$\max_{k*\in K} \left\{ \sum_{i} \sum_{k\neq k*} KStest(C_{k*}|\Delta b_i = 0, C_k|\Delta b_i = 0) \right\}$$
(7)

It aims at identifying the key guess associated to the CDF differing the most from all the others.

Coher subsets Analyses Experimental results

# HD model

|             | Success Rate | 10%  | 20%  | 40%  | 60%  | 80%  | 100% |      |
|-------------|--------------|------|------|------|------|------|------|------|
|             | CPA          | 775  | 1075 | 1525 | 2150 | 4475 | 5000 | *7   |
| time domain | DPA          | 850  | 1175 | 1750 | 2800 | 4250 | 4975 | *7   |
|             | MIA          | 1650 | 1850 | 2450 | 2900 | 3300 | 4150 | *6   |
|             | MIA mb       | 950  | 1150 | 1250 | 1600 | 1750 | 2100 | *3   |
|             | CPFA         | 1110 | 1205 | 1410 | 1630 | 2025 | 3150 | *5   |
|             | SCAN         | 260  | 320  | 430  | 660  | 910  | 1725 | *2.5 |
| frequency   | mean+MSC     | 230  | 260  | 310  | 440  | 495  | 650  | *1   |
| domain      | var+MSC      | 440  | 450  | 535  | 670  | 780  | 1135 | *2   |
|             | corr+MSC     | 320  | 410  | 480  | 532  | 660  | 730  | *1   |
|             | KS+MSC       | 350  | 370  | 440  | 455  | 540  | 690  | *1   |

Table 3 : Number of processed traces vs Success Rate (HD model)

Coher subsets Analyses Experimental results

#### HW model

|             | Success Rate | 10%  | 20%  | 40%  | 60%  | 80%  | 100% |
|-------------|--------------|------|------|------|------|------|------|
|             | CPA          | fail | fail | fail | fail | fail | fail |
| time domain | DPA          | fail | fail | fail | fail | fail | fail |
|             | MIA          | fail | fail | fail | fail | fail | fail |
|             | MIA mb       | 3550 | 3700 | 3900 | 4350 | 4550 | 4900 |
|             | CPFA         | fail | fail | fail | fail | fail | fail |
|             | SCAN         | 1510 | 1800 | 2270 | 2690 | 3220 | 4600 |
| frequency   | mean+MSC     | 2430 | 2510 | 2685 | 3460 | 3980 | 4855 |
| domain      | var+MSC      | 4250 | 4400 | fail | fail | fail | fail |
|             | corr+MSC     | 2375 | 2515 | 2705 | 3495 | 3990 | 4810 |
|             | KS+MSC       | 2120 | 2580 | 3310 | 3710 | 4070 | 4495 |

Table 4 : Number of processed traces vs Success Rate (HW model)

Coher subsets Analyses Experimental results

# CPU times

| Number of traces : | 500  | 1000  |  |
|--------------------|------|-------|--|
| CPA                | 13s  | 26s   |  |
| DPA                | 15s  | 30s   |  |
| MIA                | 4m   | 8m    |  |
| MIA mb             | 13m  | 25m   |  |
| CPFA               | 13s  | 27s   |  |
| SCAN               | 15s  | 31s   |  |
| MSC based analyses | 1h5m | 4h20m |  |

Table 5 : CPU times of the attacks with a step of 10 curves

- single sample attacks are not optimal
- in some cases frequency analyses are better, and particularly MSC based analyses
- $\bullet$  working with pair of curves  $\rightarrow$  in some cases requires less curves
- working with pair of curves is time consuming