

Evariste II

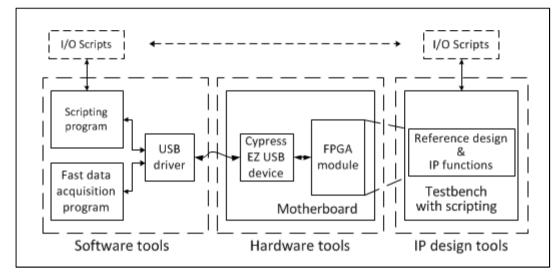
Modular hardware system for fair TRNG benchmarking

Viktor Fischer fischer@univ-st-etienne.fr Laboratoire Hubert Curien UMR 5516 CNRS Université Jean Monnet, Saint-Etienne, France

TRNGs and cryptography

- True random number generators (TRNGs)
 - Essential for security in cryptography
 - Generate confidential keys, nonces, random masks, padding values, ...
 - Use physical phenomena to generate random numbers
- Security
 - Good statistical characteristics any weakness could be used for attacking cryptographic system
 - Unpredictability preceding or new numbers (e.g. keys) cannot be guessed
 - Robustness output cannot be manipulated

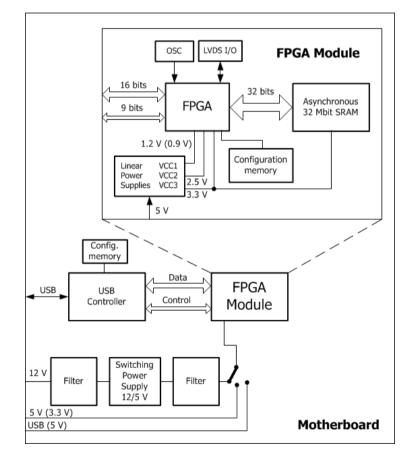
Motivation


- Behavior of the TRNG depends on the underlying hardware and operating environment
 - Device technology (inherent noise)
 - PCB (ground quality, low resistance, no loops)
 - Power supplies and filters (low noise)
 - Electromagnetic interferencies
- Objective: fair TRNG comparison and benchmarking
 - Compare some TRNG principle in various technologies
 - Compare various TRNG principles in the same conditions (device, PCB, power supplies, ...)

3

Introduction

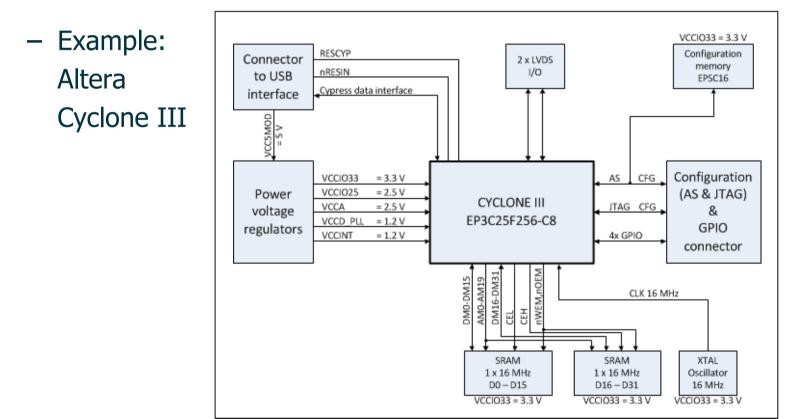
• The Evariste II toolkit – HW + two open source tools


- The hardware/software design and verification is simplified by a scripting tool: the same scripts are used by the software interpreter and the VHDL testbench
- Verified commands can be used in the final (fast) software version (the hardware remains the same)

Hardware

• Motherboard and 5 FPGA modules

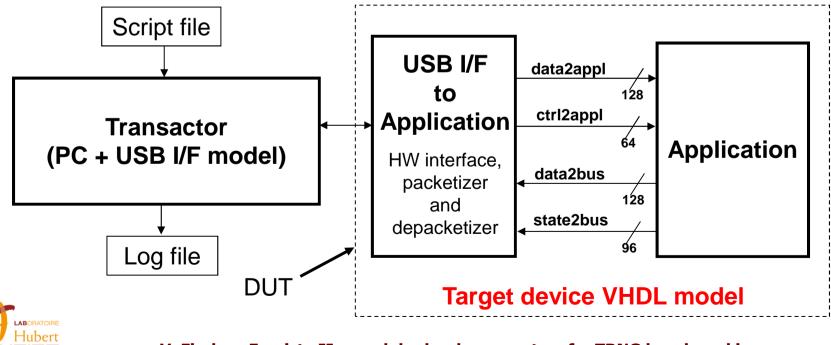
- Altera Cyclone III
- Altera Arria II
- Xilinx Spartan 3
- Xilinx Virtex 5
- Microsemi Fusion



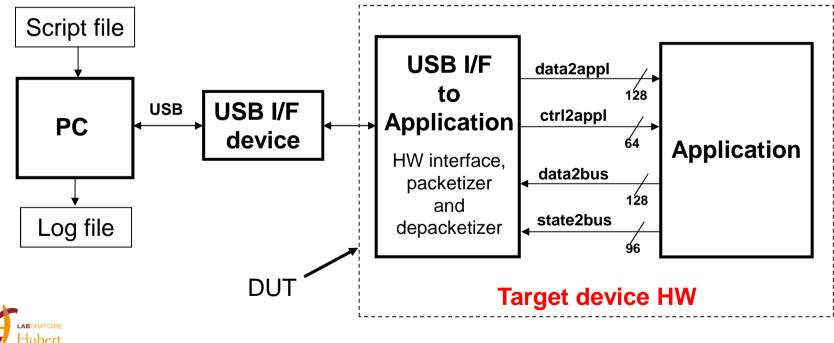
5

Hardware

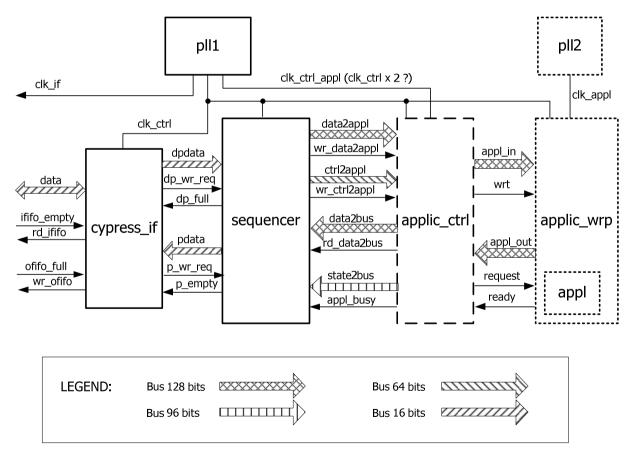
• All FPGA modules have identical topology


Scripting tools

- The hardware communicates with the PC via USB using packets
- Scripting tools enable efficient and flexible control of testbenches and hardware tests during the design
- Sending (in packets)
 - 64-bit control words
 - Up to 64k 128-bit data blocks
- Receiving
 - 96-bit state words
 - Up to 64k 128-bit data blocks


VHDL testbench transactor containing the script file interpreter

• The design under test (DUT) is accessed during the simulation using the VHDL transactor, which includes the script file interpreter


Script file interpreter software

- The hardware is accessed during the tests using the *script.exe* software interpreter
- The same scripts are used both in simulations and tests

Hardware and IP function design (1/2)

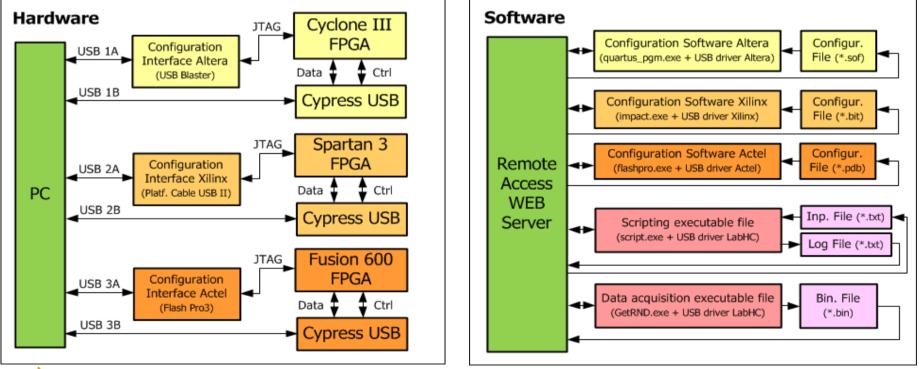
• Structure of a typical HW design

Hardware and IP function design (2/2)

- Separate projects for each FPGA family
- Design files organized in three folders inside the HW synthesis project folder
 - VHDL sources (synthesis and simulation)
 - VHDL simulation files (simulation only)
 - Automatic IP generator files (e.g. PLLs)

Sources	Quartus	ISE	Libero
Shared files	vhdl_src	vhdl_src	hdl
IP core files	ip_gen_src	ipcore_dir	smartgen
Simulation files	modelsim_prj	modelsim_prj	simulation

Reference designs


- Ref. design 1 Data acquisition test
 - Contains bidirectional counter
 - Direction of counting changed using control word (bits(2..0))
 - Up to 48 MBits/s, unlimited size of the discontinuous data stream
- Ref. design 2 Parameterized RO-TRNG
 - Contains two types of parameterized RO-TRNG (Sunar/Wold)
 - The generator type can be changed dynamically by ctrl_bit(2..0)
 - Up to 48 MBits/s, unlimited size of the discontinuous data stream
- Ref. design 3 Very fast acquisition via 4 MB RAM
 - Can be used with any TRNG one data and one clock input
 - Any input clock frequency up to 400 MHz
 - Up to 400 Mbits/s, up to 4 MB of the **continuous** data stream

Remote access to the Evariste II HW

• Remote server accessible from:

http://labh-curien.univ-st-etienne.fr/wiki-evariste-ii

Expected workflow for remote access

- Download reference designs
- Modify a reference design and include you TRNG
- Simulate your design using modified testbench and scripts
- Upload your configuration bitstream and input script to the server
- Configure the device
- Launch script.exe on remote server and download generated log file, compare it with the simulation log file
- Launch GetRND.exe and generate random bitstreams
- Download generated bitstreams

Conclusion and future steps

- Many TRNGs (and other designs) tested, including an STR TRNG with 100Mbis/s bitrate and entropy assessment (CHES2013)
- The use of scripts make the system very flexible
- Open core contributions welcome
- Next steps:
 - Data acquisition via optical fibers
 - Board placed in a Faraday cage
 - New FPGA families such as
 - Cyclone V
 - Spartan 6
 - SmartFusion 2

