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Cryptoarchi ’13 M.Rogawski, E.Homsirikamol, K. Gaj An FPGA-based Accelerator ... 1 / 25



Motivation and introduction
Efficient arithmetic in FPGAs

Pairing on Edwards curves
Tate pairing coprocessor
Results and conclusions

Pairing Based Cryptography
Prime fields

Co-authors

Co-Authors

Ekawat Homsirikamol
a.k.a “Ice”

Marcin Rogawski

Cryptoarchi ’13 M.Rogawski, E.Homsirikamol, K. Gaj An FPGA-based Accelerator ... 2 / 25



Motivation and introduction
Efficient arithmetic in FPGAs

Pairing on Edwards curves
Tate pairing coprocessor
Results and conclusions

Pairing Based Cryptography
Prime fields

Pairing Based Cryptography

M
BA

C B

A

E

P
TA

BOB
ID

E

P
TA

BOB
ID

BOB
Cert(           , P     )

TA

P
A

IR
IN

G
T

ra
d
it

io
n
al

 P
K

C

Encryption
Key Agreement

One−Round

Note: Cert − Certificate, TA − Trust Authority

ALICE BOB

C
M

ALICE BOB

C

Cryptoarchi ’13 M.Rogawski, E.Homsirikamol, K. Gaj An FPGA-based Accelerator ... 3 / 25



Motivation and introduction
Efficient arithmetic in FPGAs

Pairing on Edwards curves
Tate pairing coprocessor
Results and conclusions

Pairing Based Cryptography
Prime fields

Prime Fields

Pairing transformations can be defined over multiple fields:
binary - GF(2n), ternary - GF(3m), and prime fields - GF(p)

Binary and ternary fields are generally hardware-friendly

Prime fields are generally better for software implementations and
for cross-platform solutions

The National Security Agency (NSA Suite B Cryptography) and
eCRYPT II recommend prime fields

Scope of this work

Efficient implementation of Pairing Based Cryptosystems over prime
fields using internal resources of modern FPGAs, such as fast carry chains
(carry logic) and DSP units.
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Internal Resources of Modern FPGAs
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Hierarchy of Operations in Pairing Based Cryptography (PBC)

Field Operations

Multiplication

Curve Operations

Cryptographic protocols and schemes

Pairings

SquaringPoint Addition Point Doubling

Squaring Addition Subtraction

Bilinear Operations

Extension Field Operations

Multiplication

Group Operations

Multiplication

Scalar

Hardware architecture recipe:

Optimizations on every level CAN NOT be conducted totally
independently!
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Novel Hybrid high-radix carry save adder with parallel prefix Kogge-Stone network
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Generic modular adder

n − number of bits of P
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Novel modular adder/subtractor
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Novel Multiply-and-Add DSP-based multiplier 1/2
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Novel Multiply-and-Add DSP-based multiplier 2/2

Phase III: clock cycle M−1
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Three operational phases of the selected processing element:

Phase I: clock cycle 0 Phase II: clock cycle 1..M−2

Protocol Xilinx Virtex-6 Altera Stratix IV & V
#bits of A processed per clock cycle n n

#bits of B processed per clock cycle 24 36

#clock cycles per multiplication d n
24e d n

36e
#DSP units d n

17e d n
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Meaning of DSP unit DSP48E1 slice Half-DSP block
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Arithmetic for Special Primes

Reductions modulo 2n+1 and modulo 2n-1 are very efficient.
(Problem: Not every number of this form is prime!)

Primes of a form (2a ± 2b ± 1 and 2a ± 2b ± 2c ± 1) were
introduced by Solinas [NSA’99], Solinas prime’s arithmetic is
recommended by NIST for digital signature schemes [FIPS-186]!

Comment:

But it is not applicable for all primes in Solinas form!
(e.g.: 2520 + 2363 − 2360 − 1)
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Novel solution: Barrett-based reductor for Solinas primes

n+1

Multiplication
by constant p

q
1

r
1

Multiplication
by constant u

addition
const(0)

addition
const(7)

n+1
B = 2

r

n

r  (sum)

r  (carry)
2

2

subtraction subtraction

(ln. 6) (ln. 6)

(ln. 7−12)(ln. 7−12)

(ln. 2)

(ln. 5)

const = {0, B , B−p, B−2p, B−3p, −p, −2p, −3p} 

n+1
Algorithm 1 Barrett modular reduction [Crypto’86]

Require: x = (x2n−1...x1, x0)2, p = (pn−1...p1, p0)2

(pn−1 6= 0), µ = b22n / pc
Ensure: r = x mod p

1: q1 ← bx/2n−1c
2: q2 ← q1 ∗ µ
3: q3 ← bq2/2n+1c
4: r1 ← x mod 2n+1

5: r2 ← q3 ∗ p mod 2n+1

6: r ← r1 − r2
7: if r < 0 then
8: r ← r + 2n+1

9: end if
10: while r ≥ p do

11: r ← r − p

12: end while
13: return r

Comment:

p can be chosen in such a way, that µ = 2
at−1 + 2

at−2 + ... + 2a1 + 20, where t is a relatively small number.
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Elliptic Curve Cryptography

Definition: Elliptic curve over GF (p) is a set of points
fulfilling equation of the curve and special point ∞.

Q
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∃P(generator) : P, 2P, 3P, ...mP =∞
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Edwards curves + application

Edwards curve [AmericanMath’07] is a set of points which fulfill
equation x2 + y2 = 1 + dx2y2 mod p

generalized form ax2 + y2 = 1 + dx2y2 mod p - a-twisted Edwards
curves proposed by Bernstein et al. [AfricaCrypt’08]

Extended projective formulae defined by Hisil et al. [AsiaCrypt’08]

An elliptic curve is called supersingular, if its number of points is
equal to p + 1

Edwards curves together with special prime number P-25519 were
adopted to digital signatures by Bernstein et al. [CHES’11]
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What is Pairing?

Pairing is a mathematical transformation which takes two arguments:
two elliptic curve points P and Q from two algebraic groups G1 and G2

and it produces an element of the third algebraic group GT .
The most important properties of these G1 x G2 → GT functions are:

bilinearity ∀ a,b ∈ Zp:
e(aP, bQ) = e(aP,Q)b = e(P, bQ)a = e(P,Q)ab

non-degeneracy ( function e(P,Q) never returns ’1’), and

efficiency in computations.

Pairing on Edwards curves

Pairing on twisted supersingular k = 2 Edwards curve was defined by Das and Sarkar [Pairing’08]

Pairing on ordinary Edwards curves was defined by Arene et al. [Journal of Cryptology’09]

So far NO hardware architectures or software implementations for pairing on Edwards curves reported in
literature
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How to generate secure and computationally-friendly prime numbers? - part I

Security concerns:

p must be a large prime number, and p ≡ 3 (mod 4)

p + 1 must have a large prime divisor r - the discrete logarithm
problem in the elliptic curves must be hard (Pollard rho)

Edwards curves parameters must be a = 1, d = p − 1

k, so called embedding degree, is the smallest number, such that
pk−1 is divisible by r

For aforementioned parameters, Edwards curve has p + 1 points,
embedding degree k = 2, and it is called supersingular curve

p must be a large prime, the discrete logarithm problem in the p2

must be hard (functional field sieve)
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How to generate secure and computationally-friendly prime numbers? - part II

p and r can have a special form - Menezes and Koblitz [ePrint’06]
recommended Solinas primes [NSA’99] (2a ± 2b ± 1)

Observation: Barrett reduction [Crypto’86] requires multiplication

by constants: p and µ = b 22·n

p c, and 2n > p, and n - number of bits
of p.

we search such for p such that µ = 2at−1 ± ...± 1 and t is relatively
a small number (t < 30).

we were looking for r with a very low Hamming weight (< 5%)

Comment:

The GMP library-based software implementation of the parameters
generation algorithm requires significant amount of time to find friendly
numbers
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Parameters used in our work

Security Field order - p Prime divisor - r # terms of µ

80-bits 2520 + 2363 − 2360 − 1 2160 + 23 − 1 12

120-bits 21263 + 21037 − 21005 − 1 2258 + 232 − 1 28

128-bits 21492 + 21237 − 21224 − 1 2268 + 213 − 1 30

191-bits 23955 + 23581 + 23573 − 1 2382 + 28 − 1 21

Observations:

The multiplication by p and µ can be replaced by multi-operand
addition!

The prime divisor r (2a + 2b − 1) has always a form of 10..01..1
(computationally cheaper - check next slide!).
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General algorithm for the modified Tate pairing

Algorithm 2 Miller’s algorithm for computing modified Tate pairing

Require: Points P and φ(Q), prime divisor r = (rl−1 ... r0), field order p, and embedding degree k, hP,Q a
rational function

Ensure: F = e(P, φ(Q))

1: F = 1, R = P
2: for i = l − 2 downto 0 do
3: G ← hR,R (φ(Q)) and R = 2R /* Algorithm 3: 14 multiplications */

4: F = F 2 ∗ G /* Algorithm 5 and 6: 2+4 multiplictions */

5: if ri = 1 then

6: G ← hR,P (φ(Q)) and R = R + P /* Algorithm 4: 24 multiplications */

7: F = F ∗ G /* Algorithm 5: 2 multiplications */

8: end if
9: end for

10: return F ← F
pk−1

r /* Algorithm 7: next slide */

What if for the substantial number of P and Q the result of e(P,Q) = 1?

Distortion maps! φ(Q) = (xQ i, 1
yQ

), where i2 = −1. Consequently, F and G are the complex numbers.

Other names: twists or operations in the extension field x2 + 1, in this case.
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Coprocessor overview

The overview of novel coprocessor block diagram

R = {r(N−1), ... r(0)}

for the double speed mode
Additional circuit 

System Multipliexer
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Number of 17−bit words:

N = 31 (80−bit), 75 (120−bit), 88 (128−bit)

A = {a(N−1), ... a(0)}

B = {b(N−1), ...b(0)}
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FPGA-based hardware architectures - preliminary results Stratix V

80-bit security coprocessor: logic - 41471 ALM, memory - 552k, 120
DSPs, 263 MHz, latency: 133µs

120-bit security coprocessor: logic - 120628 ALM, memory - 1327k,
288 DSPs, 257 MHz, latency: 541µs

128-bit security coprocessor: logic - 137484 ALM, memory - 1432k,
336 DSPs, 242 MHz, latency: 697µs

Reference software implementation results:

GNU Multiple Precision Arithmetic Library

Testing platform: Mac OS X 10.6.8, CPU: Intel Core i7 2.8GHz,
8GB 1067 MHz DDR3

80-bit: 5.09ms, 120-bit: 29.41ms, 128-bit: 37.11ms
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Speed records for the range of 120-128-bits security for the pairing transformations

over prime fields

Publication Curve Type Security Type Platform Latency

This work twisted supersingular Edwards 120-bit Tate Stratix V 0.54ms
Cheung et al. [CHES’11] Barreto-Naehring 126-bit Opt.-Ate Virtex-6 0.57ms

This work twisted supersingular Edwards 128-bit Tate Stratix V 0.70ms
This work twisted supersingular Edwards 120-bit Tate Stratix IV 0.70ms
Beuchat et al. [Pairing’10] Barreto-Naehrig 126-bit Opt.-Ate Core i7 2.8 0.83ms

This work twisted supersingular Edwards 128-bit Tate Stratix IV 0.88ms
This work twisted supersingular Edwards 120-bit Tate Virtex-6 1.05ms
Cheung et al. [CHES’11] Barreto-Naehrig 126-bit Opt.-Ate Stratix III 1.07ms

Fan et al. [Computers’11] Barreto-Naehrig 128-bit Opt.-Ate Virtex-6 1.36ms

This work twisted supersingular Edwards 128-bit Tate Virtex-6 1.05ms
Fan et al. [Computers’11] Barreto-Naehrig 128-bit Ate Virtex-6 1.60ms

Cheung et al. [CHES’11] Barreto-Naehrig 126-bit Opt.-Ate Cyclone II 1.93ms

Comment:

The fastest reported pairing coprocessor over prime fields for security
level above 120 bits!
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Major Contributions

Novel, low latency, generic, optimized for fast carry-chains
(FPGA), hybrid adder for big numbers (thousand of bits and
more)

Solinas primes-based, DSP-oriented, modular arithmetic
architectures for addition, subtraction and multiplication

First hardware architectures for 80, 120 and 128-bit pairing on
Edwards curves

Our coprocessor (on Stratix V) computes 120 and 128-bit
secure pairing over prime field in less than 0.54 and 0.70 ms,
respectively. It is the fastest pairing implementation over
prime fields in this security range
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Questions

Questions?

Thank you!

Questions?

CERG:      http:/cryptography.gmu.edu 
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