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Light-weight Shared-key Authentication
Protocols

» Lightweight shared-key authentication protocols are
widely used

» Typical settings:
1. Reader generates challenge ¢
2. Tag computes response z = Fi/(c)
3. Reader computes z’ = Fg(c)
4. Reader accepts the Tag if z = 2/

READER TAG

Challenge ¢ R
\ "“/ . Response z = Fq(c) ‘
o \
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Ideal Authentication Protocol

Considered conditions:

» Protocol properties:
1. Provably secure
2. Small amount of transfered data
3. Minimum of rounds (i.e. 2)
4. Fast response (low latency)

» Tag properties:
1. Small footprint (in HW)
2. Small code size (in SW)
3. Low-power
4. Low-cost
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Protocol Classification

Many such algorithms exist, e.g.:

» Block-cipher based schemes

» AES-based — may be too heavy for some appl.
» Present-based — more suitable

» Schemes based on hardness of a mathematical
problem:
» Learning Parity with Noise problem (LPN)

» Hopper-Blum protocol (HB)
» Variants of HB (HB+, HB-MP, etc.)
» Lapin protocol !

» Others

1Lapin: an efficient authentication protocol based on Ring-LPN, S. Heyse, E.
Kiltz, V. Lyubashevsky, Ch. Paar, K. Pietrzak, pages 346-365, FSE 2012
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Learning Parity with Noise Problem (LPN)

» Given a set of samples (A,t = A-s+ e) with a
random error e, where t,e € F) and A € F3*"

» Find the secret s € [F

» Solution:
a) if e = 0 than Gaussian elimination can solve it
— no security!
b) if e > 0 than it may become an NP-Hard problem
— suitable for cryptography!

Note: The error e is generated with the Bernoulli
distribution with parameter 7. HW(e) ~ nt

LCChpolCrolp Masked LAPIN - June 24th, 2013




Ring-LPN problem

» Ring Learning Parity with Noise (Ring-LPN) is an
extension of LPN to rings
» The matrix A has a special structure. This way A- s is

equivalent to the multiplication in the ring
R = F[X]/f(X)

» Lapin provably secure based on the Ring-LPN
problem
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Lapin Protocol Parameters

» 2-round protocol

» Public parameters:
R.n  ring R=F,[X]/f(X), deg(f) = n

A security level parameter (in bits)
©  mapping {0,1}* — R
7€ (0,12 parameter of Bernoulli distribution

~— ~—

7€ (1,12 reader acceptance threshold

» Secret parameter:

K = (s,s')  shared secret key, while (s,s’) &R
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Lapin Protocol description

Public parameters: R, 7:{0,1}* = R, 7,7/, A
Secret key: K = (s,s') € R?

—— &0
r&R*;e&BerEER (r,2)
z=r-(s-m(c)+s)+e —>5
if r ¢ R* reject
e =z—r-(s-m(c)+5)

if HW(e’) > n- 7' reject
else accept

©@O®LOO
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Masking countermeasure

» Objective: decrease the correlation between the
consumed power and the processed sensitive data

» Implementation: all sensitive variables must be split
to shares and computations should be performed on
each share separately (if possible)

» Conditions for effective Example:
masking:
» the leakage of each share is h = @
independent from the others
» sufficient noise is present in hy = qqg
the device d

hagt1 = hd Dai

i=1
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Masking of Lapin

1. Split sensitive variables s, s’ and e into d + 1 shares:

s = 51@52@"‘@Sd+1,
/ _ / / /

S = 55D D DSy,
e = eDbed---Dey

2. Derive a formula allowing to demask the output

z = (n(c)- s@s) rde
[7(c) (51 @+ D sgy1) D(s{ D+ Dsyy)] r®(er®-- D egra)

[(w(c) 51 sl) roel® @ [(1(c) a1 @ spy) 1@ eqia]
= 210 -Dzygp1

» Lapin is linear = each share is computed separately

UCL Crypto Group
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Definition of constants

Constants are chosen as in the Lapin paper:
» deg (f(X)) =n=0621 » 7=1/6
»m=>5 » 7' =10.29
» m factors of f(X) are: » A = 80 bits

A(X) = X7+ X® o+ XT + X3 4+ 1
H(X) = X2 + X + X 4+ X° 4+ 1
R(X) = X2 + X° + X' + X* + 1
fa(X) = X2 + X' + X' + X3 + 1
ARX) = X2 4 X8 4+ X5+ X o+ 1
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Polynomial multiplication & reduction

» We have implemented a 128-bit " school-book”
polynomial multiplication unit because:
» it can be performed in parallel with 1-bit reduction
» its hardware implementation is very small

» its implementation can operate on high frequencies

» This unit can be shared for Lapin computations as
well as error e transformation
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Implementation description

LAPIN core
» 8b to 128b TRNG
datapath width DIN
» Data registers in

RAM
» Accumulator in RAM

» Carry register if
k <128

» Shift register must
not load sensitive
data
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Cost evaluation & Timing results

» Lapin was synthesized for Xilinx Virtex 5 FPGA

One share (d = 0) Three shares (d = 2)
8-bit | 16-bit [32-bit[64-bit[128-bit || 8-bit [ 16-bit | 32-bit [64-bit[128-bit
Filcyc] || 4,048 | 2,024 [1,012] 506 | 257 |12,144] 6,072 [ 3,036 [1,518| 771
Falcyc] || 4,160 [ 2,080 |1,040| 520 | 264 |12,480] 6,240 [ 3,120 [1,560| 792
Fslcyc] || 4,208 | 2,104 |1,052| 526 | 267 |12,624] 6,312 [ 3,156 [1,578| 801
Falcyc] || 4224 | 2,112 |1,056| 528 | 268 |12,672] 6,336 | 3,168 | 1,584 | 804
Fslcyc] || 4,336 [ 2,168 |1,084| 542 | 275 |13,008] 6,504 | 3,252 [1,626| 825
TOTAL[cyc] ||20,977|10,489]5,245 | 2,623 | 1,332 |(62,961|31,481[15,741[7,871 3,996

Slices 170 214 | 254 | 294 | 414 213 232 311 | 330 451
BRAM 18kb 2 2 1 0 0 2 2 1 0 0
BRAM 36kb 0 0 1 3 6 0 0 1 3 6

| fmax[MHz] |[ 139.7 [ 141.9 [145.4[147.2] 163.5 | 125.3 [ 127.5 [ 127.2 [130.2] 140.3 |

» d = 0: Lapin without masking
» d = 2: Masked Lapin — secure to second-order attacks
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Comparison

AES (SW) |Lapin? (SW) | Lapin (HW) "

[Our] [Heyse2012] [Our] Q

—o— - —a— 'S’\

< (0 3000 112500 20977 ©

& [T|[ 135087 225016 41969 3

512 272159 337532 62961 o

g [3][ 474287 | 450048 83953 <

5 i 744769 562564 104945 Qo

:H:i 1047878 675080 125937 H

6| 1389780 787596 146929 0 2 4 6

aFor d > 0 values are estimated # of masking order (d)

» When increasing d, number of clock cycles grows
linearly for Lapin and quadratically for AES
=> It’s substantially cheaper to increase security of
Lapin to higher-order SCA than of AES
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Attack model

» Target operation: s - 7(c), where 7 is zero padding

» Assumption: Device leaks accumulator H. weight

» Accumulator is updated during the multiplication loop:
{2-a;+s if c[80 — /] = 1

aiy1 <

dg = 0 i
2-a; otherwise

» The value of a after a few cycles of computation is a
small multiple of the secret:

m;(c)
7 "\ Y

ago=5-¢C a;:s-Zc[SO—j]Xi_j
j=1

» Device leaks HW(a;)
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Unprotected design (d = 0)

Two options:
» Attack can target several clock cycles in a single
trace with the same challenge ¢
» Attack can target the same clock cycle in several
traces, while challenges are chosen appropriatelly

Attack:

» Predict some bits of a; = s - m;(c)

» If deg(a;) <t we can compute p least significant
bits of a; from the p least significant and t most
significant bits of s.

t

redu

—_— —_— mul\
x ,—l-_\
m;(c): T = a1 1 [ 1 [
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Unprotected design (d = 0)

» Correlation for t =7 and p =3

1

0 50 100 150 200 250 300

LCChpolCrolp Masked LAPIN - June 24th, 2013




Unprotected design (d = 0)

» Other approach: Prediction of modular reduction
impact on hamming weight

» Assumption: accumulator contains value « that will be
shifted and reduced in next clock cycle

(<) if MSb(a) =0
(e <1)@f if MSb(a) =1

Since the polynomials f are pentanomials, we have

HW(f) = 4, and

a-Xmodf:{

HW(«) if MSb(a) =0
1

HW(a- X mod f) = {HW(a) + {£1,£3} if MSb(a) =
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Conclusion

» Lapin is linear — straightforward to mask
» Masked Lapin was implemented in an FPGA

» Compact and very fast

» Flexible datapath size (8-,16-,32-,64- and 128-bit)

» High-order masking overhead increases linearly
(quadratically for AES)

» Unprotected Lapin security to SCA was analyzed

» Hamming weight model of accumulator
» Attack based on prediction of t MSb and p LSb of s
» Attacks exploiting reduction circuitry

Work in progress! Thank you for attention!
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Extra slides

» Impl. issue: how to generate error bits with
T=16=0.16

» Close probabilities:

3-bit:
4-bit:
5-bit:
6-bit:
7-bit:
8-bit:
9-bit:
10-bit:

UCL Crypto Group

1/ = 0.125, A = —0.416

3/16 = 0.1875, A = +0.02083

5/32 = 0.15625, A = —0.010416
11/64 = 0.171875, A = +0.0052083
21/128 = 0.1640625, A = —0.00260416
43/256 = 0.16796875, A = +0.001302083
85/512 = 0.166015625, A = —0.0006510416

171/1024 = 0.1669921875, A = +0.00032552083
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