Implementation of DES cryptographic algorithm
using NVIDIA GPU for a brute-force attack

Miroslav Monok Robert Lorencz

Department of Computer Systems
Faculty of Information technology
Czech Technical University in Prague

June 25, 2013

e

Schedule

Schedule

@ Schedule

® Motivation

© Data Encryption Standard
o CUDA GPU

@ Bitslice

@ Reference solutions

@ Implementation

® Comparison

Motivation
°

Motivation

e Create efficient software implementation of DES algorithm
using GPU

e Prove that GPU technology can be compared to specialized
HW in terms of power/cost ratio

Data Encryption Standard
°

Data Encryption Standard

Widely used.

Plenty of different implementations available

Often used as a "benchmark”

Till now completely broken only by brutte force attack

o]
[a
]
<
[a]
o]
]

CUDA GPU

GPU as a cheap and powerfull computational platform

m [[T TTTTT]

ALU

ALU

ALU

ALU

Control

T

GPU

CPU

CUDA GPU
°

CUDA architecture

e Big amount of simple computational units Straming
Processor, grouped into Streaming Multiprocessor

e CUDA is a complete SW & HW architecture.

e Threads grouped into blocks run in parallel. Parallel part of
programme is called (Kernel)

e Number of threads and blocks per kernel determines overall
power.

e Cuda defines different memory types (registers, shared
memory, constant memory (no/cached),main memory,...)

e Memory size vs. memory response time.

Bitslice
.

Bitslice

@ Different data representation
@® Bits of word are placed in 0.

... 63

different variables. 64-bit
© Bit-level parallelization

@ SW permutation by
addressing — DES is
reduced to S-boxes

@ Efective use of memory
@ 1xbitslice DES=32xDES.

n

64x 32-bit slices

63

Bitslice
°

Bitslice

S-box as a Lookup-table is replaced by logical functions
(using XOR, OR, NOT, AND gates)

Each of the output bits from S-box is function of all input bits
0j = f(i1, 12,13, 14,15, i)

DES reduced to S-boxes = one big logical function.

Complexity of function determines the speed of algorithm.

Reference solutions
°

COPACOBANA

backplane

Specialized HW based on FPGA technology.

Up to 120 FPGA cores (Xilinx Spartan-3 XC351000)
Power: 65.28 x 107 keys/sec.

Price: 10 000€ (HW), up to 60 000<€ as market price.

Reference solutions

Record Setting Software Implementation of DES Using

CUDA

e Published on (Seventh International Conference on
Information Technology 2010) by italian group of scientists.

e SW solution running on CUDA GTX 260-216 graphic card.
e using Bitslice data representation.

o Power: 373.58 x10° keys/sec.

e configuration: 65535 blocks x 256 threads.

e Price: 110€

Implementation
.

HW configuration

Used configuration

Computational node Alpha (gpgpu-alpha.fit.cvut.cz) :
e CPU :Intel i5 760 2.8GHz.
e RAM:8GB.
e GPU:GeForce GTX 480.

Implementation
[el

Basic bitslice DES version

First version, optimalized by compiler.
1 thread=1 bitslice DES= 32 keys.

Frequent communication with main memory.

High use of registers = low use of computational units.

Power: 568 330 506.2 keys/sec., version CoreLight 576 792
274.2 keys/sec.

Implementation
o

Basic bitslice DES version

@32 blocks - 64 blocks 128 blocks @256 blocks @512 blocks

600

500

400
©
@
@
@ 300
>
[
=
=
200 200
100 100
0 0
32 threads 64 threads 128 threads 256 threads 512 threads

number of threads in blocks

Implementation
°

Dividing the computation

DESS8

e 8 threads, each computing one S-box.

e Variables stored in shared memory.

e Low number of threads per block. Code divergency.

e speed: 353 061 687.5 keys/sec (32768 blocks)
DES32

e Each threads computes 1 output bit from S-box.

e Variables stored in shared memory.

o Power: 449 628 790.34 keys/sec (32768 blocks)

e Dividing the computation didn't bring desired speedup (code
divergency, ...)

Implementation
°

DESconst

e Use of constant memory for plaintext and ciphertext and part
of the key

e Lower use of registers improved the speed about 20%
e Power: 651 018 433.4 keys/sec.

Implementation

L Jeo}

Key is divided into several parts:

Thread Index | Constant

Kernel Call Index Block Index

precomputation of key on CPU = part of the key is constant.

Does not allow to change number of blocks/threads
dynamically

till now, our most powerfull version
Power: 1.03 x 10° keys/sec. (64 threads / 8192 blocks)

Implementation
oe

=3 DESopt

1040

1020

1000

980

960

940

Mkeyslsec

920

900

880

860
512 1024 2048 4096 8192 16384 32768

number of blocks

Comparison

Comparison
°

Power (Key/sec) HW Price [€] Power /price
COPACOBANA 65280 x 10° 10 000 (60 000) € | 6.528 (1.1)
DES Italy (GTX260) | 373.58 x 10° 110€ 3396
DESopt (GTX480) 1030 x 10° 210€ 4.904

Conclu:
°

Implementation - Conclusion

e Speedup 2.76 x comparing with reference SW solution

e Throughput aprox 53.7 Gbit/sec

e The number of registers available per thread is the limiting
factor.

e Speedup was achieved by use of constant memory and by
dividing the key.

e Further improvement are possible by optimizing logical
functions for S-Boxes

Conclu:
°

Conclusion

e CUDA is widely supported (forums, big community, SW
updates,...)

e No need for special skills and training to develop on GPU
e Different data representation can bring speedup (bitslice)

e FPGA based solutions-more expensive HW and
DEVELOPMENT (SW, testing, developers,..)

e GPU technology is significantly cheaper and more flexible, but
still slower than dedicated HW

Thank you for attention!

Miroslav Monok
monokmir@fit.cvut.cz

	Schedule
	Motivation
	Data Encryption Standard
	CUDA GPU
	Bitslice
	Reference solutions
	Implementation
	Comparison

