
Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Towards a secure implementation of a Goppa
decoder

(Work in progress)

Tania RICHMOND
with Pierre-Louis CAYREL, Viktor FISCHER

and Pascal VÉRON

June 25th, 2013

1/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

1 Motivation
Error-correcting codes
Code-based cryptography
Goppa codes

2 Patterson algorithm
General
Input/output
Algorithm step by step

3 Implementation in hardware
Galois field multiplier
Architectures
Results

4 Conclusion

2/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Error-correcting codes
Code-based cryptography
Goppa codes

Error-correcting codes

Original application: Correct errors after data transmission
(if possible).
How? Adding some redundant information.

Example

Messages: {0, 1} Codewords: {000, 111}
1→ 111 −→ 110→ 111→ 1

We use linear codes so the redundancy is linearly dependant of the
information.

3/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Error-correcting codes
Code-based cryptography
Goppa codes

Code-based cryptography

New application of error-correcting codes:

Fast computations,
No quantum algorithm with polynomial complexity to break
the mathematical hard problem (to date).

Principle: uses syndrome decoding as a trapdoor one-way function
Syndrome decoding problem:

Known:

H a r × n-matrix;
S a vector of length r ;
and t an integer < n.

Question:

Does there exist
a vector e of
length n and
weight t such
that: ?

4/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Error-correcting codes
Code-based cryptography
Goppa codes

Goppa codes used as trapdoor

Goppa decoder can be used both for encryption and signature.

Used in

The McEliece public-key encryption scheme;

The CFS signature scheme.

Advantages of Goppa codes:

Like random codes in several (most) cases,

Dense family of codes,

Have an efficient decoding algorithm.

5/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm

Used in code-based cryptography;

For binary Goppa codes decoding;

Proposed by N. J. Patterson in 1975.

Advantages

Fast computations for binary codes and ability to correct more
errors.

6/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
McEliece cryptosystem

McEliece Public-Key Cryptosystem:

KeyGen

Public key: Choose a code, with its generator matrix, for which
we have a decoding algorithm.

Private key: Transform this generator matrix to obtain an
equivalent generator matrix which seems random.

Encrypt

Encode the message and add a random error of weight t.

Decrypt

Decode the ciphertext and come back to the original codeword.
7/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Input/output

Inputs:
y = c ⊕ e a codeword with errors,
Γ(L, g(X )) the Goppa code, with
L = {α1, α2, . . . , αn} ⊂ F2m and
g a polynomial of degree t.

Output:
c a codeword (without errors).

All operations are in finite fields.

8/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Algorithm overview

1 Compute the syndrome polynomial.

2 Invert the syndrome polynomial modulo g(X ).

3 Compute the square root of the syndrome polynomial inverse
plus X modulo g(X ).

4 Determine the even and odd parts of the error locator
polynomial (ELP).

5 Determine the ELP.

6 Evaluate the ELP to find its roots.

7 Correct the codeword with the error vector.

9/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Step 0 (precomputation)

Square root of X mod g(X )

R(X ) =
√
X mod g(X )

= X 2m−1
mod g(X )

because for all X ∈ F2m , X verifies X 2m = X , so X 2m−1
= X 1/2.

10/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Step 1

Syndrome polynomial

Compute S = Hty summing several columns of H.

Then we obtain the Syndrome polynomial S(X ).

Example (from S to S(X ))

We can see the vector S = (st−1, st−2, . . . , s1, s0)
as the polynomial S(X ) = st−1X

t−1 + st−2X
t−2 + . . .+ s1X + s0.

11/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Step 2

Syndrome inversion

Compute

T (X ) = S−1(X ) mod g(X )

by extended Euclidean algorithm.

12/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Step 3

Square root of Syndrome inverse plus X , modulo g(X )

Compute

τ(X ) =
√
T (X ) + X mod g(X ).

Setting h(X ) = T (X ) + X , we use the following formula:

τ(X ) =
(t−1)/2∑
i=0

h2
m−1

2i X i +
t/2−1∑
i=0

h2
m−1

2i+1X
iR(X )

where R(X ) =
√
X mod g(X ).

13/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Step 4

Even and odd parts of the Error Locator Polynomial (ELP)

Compute a(X ) and b(X ) such that

a(X ) = b(X )τ(X ) mod g(X )

by extended Euclidean algorithm.

14/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Step 5

ELP building

Construct σ(X ) such that:

σ(X ) = a2(X ) + Xb2(X )

Example (if t is odd)

a(X ) = σ0 + σ2X + . . .+ σt−1X
(t−1)/2

b(X ) = σ1 + σ3X + . . .+ σtX
bt/2c

σ(X ) = σ0 + σ1X + . . .+ σt−1X
t−1 + σtX

t

15/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Step 6

Finding roots of the ELP

Test all elements in L to find the roots of σ.
The roots of σ correspond to the nonzero coordinates of the error
vector.

Example (Horner algorithm)

σ(X ) = σtX
t + σt−1X

t−1 + . . .+ σ1X + σ0
= (((σtX + σt−1)X + . . .)X + σ1)X + σ0

for all X in L.

16/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

General
Input/output
Algorithm step by step

Patterson algorithm
Step 7

Error vector reconstruction

Change all corresponding coordinates in y .
(Thanks to the error vector found in the previous step.)

17/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Galois field multiplier
Architectures
Results

Implementation in hardware
Core unit - Galois field multiplier (GM) (1/4)

Steps 5 and 6 of Patterson algorithm in hardware:
Description:
Multiplication of two elements
α and β of a finite field
F2m = F2[X ]/Qm(X ).
The product denoted r by
Galois Multiplier (GM) is in F2m .
Parameters:
m the degree of the polynomial

Qm(X ) =
m∑
i=0

qiX
i

a polynomial of degree m on F2

(version 1)

Inputs: Two elements of F2m represented
by two polynomials of degree m − 1

α(X ) =
m−1∑
i=0

αiX
i and β(X ) =

m−1∑
i=0

βiX
i

where αi , βi ∈ {0, 1}

Qm(X ) =
m∑
i=0

qiX
i

a polynomial of degree m on F2

(version 2)
Output: Product of the inputs seen as a
polynomial of degree m − 1

r(X ) =
m−1∑
i=0

riX
i

18/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Galois field multiplier
Architectures
Results

Implementation in hardware
Core unit - Galois field multiplier (2/4)

We can represent all polynomials as vectors,
as follows:

α =
m−1∑
i=0

αiX
i

⇒ α = (αm−1, . . . , α0).

GM:
r(X )← αm−1β(X )
For i from m − 1 downto 1 do
r(X )← r(X )X + αi−1β(X ) + rm−1Qm(X )

End for
Return r

Example: m = 5
Qm(X ) = x5 + x3 + x2 + x + 1
α(x) = x4 + x2 + x and
β(x) = x4 + x

x5 x4 x3 x2 x 1

Qm 1 0 1 1 1 1
α 1 0 1 1 0
β 1 0 0 1 0

r 1 0 0 1 0

(i = 4) 1 0 0 1 0 0
0 0 0 0 0

1 0 1 1 1 1

r 0 0 1 0 1 1

(i = 3)
...

19/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Galois field multiplier
Architectures
Results

Implementation in hardware
Core unit - Galois field multiplier (3/4)

Version 1:

Implementation results

Hardware: Altera Cyclone III FPGA (EP3C25)

With fixed Qm

20/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Galois field multiplier
Architectures
Results

Implementation in hardware
Core unit - Galois field multiplier (4/4)

Version 2:

Implementation results

Hardware: Altera Cyclone III FPGA (EP3C25)

With variable Qm

21/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Galois field multiplier
Architectures
Results

Implementation in hardware
Architecture of error vector computation (Right to Left [R2L])

Expression: σ(X ) = σtX
t + σt−1X

t−1 + . . .+ σ1X + σ0

22/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Galois field multiplier
Architectures
Results

Implementation in hardware
Architecture of error vector computation (Left to Right [L2R])

Expression: σ(X ) = (((σtX + σt−1)X + . . .)X + σ1)X + σ0

23/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Galois field multiplier
Architectures
Results

Implementation in hardware
Error vector computation - implementation results

Hardware: Altera Cyclone III FPGA (EP3C25)

With fixed Qm (version 1)

Implementation results [R2L]

Implementation results [L2R]

24/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Conclusion

Goppa codes are one of the most used family (of codes) in
code-based cryptography.

Implemented a part of the algorithm, which is the most
expensive, vulnerable and necessary in all Goppa decoding
algorithms.

Implementation results of both versions ([R2L] and [L2R]) are
very similar.

However, power traces will be certainly very different.

Go to a secure implementation of a Goppa decoder.

25/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Future works

Will it be possible to attack both implementations?

No: Which is more robust and why?
Yes: We can implement both methods in parallel and select

randomly the datapath.

Determine which is the best Goppa decoder between:
1 Patterson algorithm,
2 Berlekamp-Massey algorithm,
3 Extended Euclidean algorithm.

Implementation of the complete Goppa decoder in hardware.

Implementation of the complete McEliece cryptosystem in
hardware.

Evaluations of side-channel attacks and countermeasures.

26/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder



Motivation
Patterson algorithm

Implementation in hardware
Conclusion

Towards a secure implementation of a Goppa decoder
(Work in progress)

Thank you for your attention.

Questions ?

27/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder


	Motivation
	Error-correcting codes
	Code-based cryptography
	Goppa codes

	Patterson algorithm
	General
	Input/output
	Algorithm step by step

	Implementation in hardware
	Galois field multiplier
	Architectures
	Results

	Conclusion

