Towards a secure implementation of a Goppa decoder (Work in progress)

Tania RICHMOND with Pierre-Louis CAYREL, Viktor FISCHER and Pascal VÉRON

June 25th, 2013

- Error-correcting codes
- Code-based cryptography
- Goppa codes

2 Patterson algorithm

- General
- Input/output
- Algorithm step by step
- 3 Implementation in hardware
 - Galois field multiplier
 - Architectures
 - Results

Error-correcting codes Code-based cryptography Goppa codes

Error-correcting codes

Original application: Correct errors after data transmission (if possible).

How? Adding some redundant information.

Example

We use linear codes so the redundancy is linearly dependant of the information.

Error-correcting codes Code-based cryptography Goppa codes

Code-based cryptography

New application of error-correcting codes:

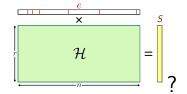
- Fast computations,
- No quantum algorithm with polynomial complexity to break the mathematical hard problem (to date).

Principle: uses syndrome decoding as a trapdoor one-way function Syndrome decoding problem:

Question:

Known:

 \mathcal{H} a $r \times n$ -matrix; S a vector of length r; and t an integer < n. Does there exist a vector e of length n and weight t such that:



Error-correcting codes Code-based cryptography Goppa codes

Goppa codes used as trapdoor

Goppa decoder can be used both for encryption and signature.

Used in

- The McEliece public-key encryption scheme;
- The CFS signature scheme.

Advantages of Goppa codes:

- Like random codes in several (most) cases,
- Dense family of codes,
- Have an efficient decoding algorithm.

General Input/output Algorithm step by step

Patterson algorithm

- Used in code-based cryptography;
- For binary Goppa codes decoding;
- Proposed by N. J. Patterson in 1975.

Advantages

Fast computations for binary codes and ability to correct more errors.

General Input/output Algorithm step by step

Patterson algorithm McEliece cryptosystem

McEliece Public-Key Cryptosystem:

KeyGen

Public key: Choose a code, with its generator matrix, for which we have a decoding algorithm.

Private key: Transform this generator matrix to obtain an equivalent generator matrix which seems random.

Encrypt

Encode the message and add a random error of weight t.

Decrypt

Decode the ciphertext and come back to the original codeword.

General Input/output Algorithm step by step

Patterson algorithm Input/output

Inputs:

 $y = c \oplus e$ a codeword with errors, $\Gamma(L, g(X))$ the Goppa code, with $L = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subset \mathbb{F}_{2^m}$ and g a polynomial of degree t. **Output:**

c a codeword (without errors).

All operations are in finite fields.

General Input/output Algorithm step by step

Patterson algorithm Algorithm overview

- **1** Compute the syndrome polynomial.
- 2 Invert the syndrome polynomial modulo g(X).
- Compute the square root of the syndrome polynomial inverse plus X modulo g(X).
- Determine the even and odd parts of the error locator polynomial (ELP).
- Oetermine the ELP.
- Evaluate the ELP to find its roots.
- Orrect the codeword with the error vector.

General Input/output Algorithm step by step

Patterson algorithm Step 0 (precomputation)

Square root of X mod g(X)

$$R(X) = \sqrt{X} \mod g(X)$$
$$= X^{2^{m-1}} \mod g(X)$$

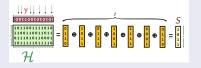
because for all $X \in \mathbb{F}_{2^m}$, X verifies $X^{2^m} = X$, so $X^{2^{m-1}} = X^{1/2}$.

General Input/output Algorithm step by step

Patterson algorithm Step 1

Syndrome polynomial

Compute $S = \mathcal{H}^t y$ summing several columns of \mathcal{H} .



Then we obtain the Syndrome polynomial S(X).

Example (from S to S(X))

We can see the vector $S = (s_{t-1}, s_{t-2}, \dots, s_1, s_0)$ as the polynomial $S(X) = s_{t-1}X^{t-1} + s_{t-2}X^{t-2} + \dots + s_1X + s_0$.

General Input/output Algorithm step by step

Patterson algorithm Step 2

Syndrome inversion

Compute

$$T(X) = S^{-1}(X) \mod g(X)$$

by extended Euclidean algorithm.

General Input/output Algorithm step by step

Patterson algorithm Step 3

Square root of Syndrome inverse plus X, modulo g(X)

Compute

$$au(X) = \sqrt{T(X) + X} \mod g(X).$$

Setting h(X) = T(X) + X, we use the following formula:

$$\tau(X) = \sum_{i=0}^{(t-1)/2} h_{2i}^{2^{m-1}} X^i + \sum_{i=0}^{t/2-1} h_{2i+1}^{2^{m-1}} X^i R(X)$$

where $R(X) = \sqrt{X} \mod g(X)$.

General Input/output Algorithm step by step

Patterson algorithm Step 4

Even and odd parts of the Error Locator Polynomial (ELP)

Compute a(X) and b(X) such that

$$a(X) = b(X) au(X) \mod g(X)$$

by extended Euclidean algorithm.

General Input/output Algorithm step by step

Patterson algorithm Step 5

ELP building

Construct $\sigma(X)$ such that:

$$\sigma(X) = a^2(X) + Xb^2(X)$$

Example (if *t* is odd)

$$a(X) = \sigma_0 + \sigma_2 X + \ldots + \sigma_{t-1} X^{(t-1)/2}$$

$$b(X) = \sigma_1 + \sigma_3 X + \ldots + \sigma_t X^{\lfloor t/2 \rfloor}$$

$$\sigma(X) = \sigma_0 + \sigma_1 X + \ldots + \sigma_{t-1} X^{t-1} + \sigma_t X^t$$

General Input/output Algorithm step by step

Patterson algorithm Step 6

Finding roots of the ELP

Test all elements in L to find the roots of σ .

The roots of σ correspond to the nonzero coordinates of the error vector.

Example (Horner algorithm)

$$\sigma(X) = \sigma_t X^t + \sigma_{t-1} X^{t-1} + \ldots + \sigma_1 X + \sigma_0$$

= $(((\sigma_t X + \sigma_{t-1}) X + \ldots) X + \sigma_1) X + \sigma_0$

for all X in L.

General Input/output Algorithm step by step

Patterson algorithm Step 7

Error vector reconstruction

Change all corresponding coordinates in *y***.** (Thanks to the error vector found in the previous step.)

Galois field multiplier Architectures Results

Implementation in hardware Core unit - Galois field multiplier (GM) (1/4)

Steps 5 and 6 of Patterson algorithm in hardware:

Description:

Multiplication of two elements α and β of a finite field $\mathbb{F}_{2^m} = \mathbb{F}_2[X]/Q_m(X)$. The product denoted *r* by Galois Multiplier (GM) is in \mathbb{F}_{2^m} .

Parameters:

m the degree of the polynomial $Q_m(X) = \sum_{i=0}^m q_i X^i$ a polynomial of degree *m* on \mathbb{F}_2 (version 1)

Inputs: Two elements of \mathbb{F}_{2^m} represented by two polynomials of degree m-1 $\alpha(X) = \sum_{i=0}^{m-1} \alpha_i X^i \text{ and } \beta(X) = \sum_{i=0}^{m-1} \beta_i X^i$ where $\alpha_i, \beta_i \in \{0, 1\}$ $Q_m(X) = \sum_{i=0}^m q_i X^i$ a polynomial of degree m on \mathbb{F}_2 (version 2) **Output:** Product of the inputs seen as a polynomial of degree m-1 $r(X) = \sum_{i=1}^{m-1} r_i X^i$

Galois field multiplier Architectures Results

Implementation in hardware Core unit - Galois field multiplier (2/4)

We can represent all polynomials as vectors, as follows:

$$\alpha = \sum_{i=0}^{m-1} \alpha_i X^i$$

$$\Rightarrow \alpha = (\alpha_{m-1}, \dots, \alpha_0).$$

GM: $r(X) \leftarrow \alpha_{m-1}\beta(X)$ For *i* from m-1 downto 1 do

 $r(X) \leftarrow r(X)X + \alpha_{i-1}\beta(X) + r_{m-1}Q_m(X)$ End for Return r

Example: m = 5 $Q_m(X) = x^5 + x^3 + x^2 + x + 1$ $\alpha(x) = x^4 + x^2 + x$ and $\beta(x) = x^4 + x$ x^4 x^3 x^2 х 0 1 1 1 1 Q_m 1 1 0 1 0 1 0 α β 1 0 0 0 r 1 0 (i = 4)0 1 0 0 0 0 1 0 1 1 1 1 0 0 1 0 1 1 (i = 3)

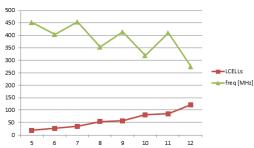
Galois field multiplier Architectures Results

Implementation in hardware Core unit - Galois field multiplier (3/4)

Version 1:

- Implementation results
- Hardware: Altera Cyclone III FPGA (EP3C25)
- With fixed Q_m

m	LCELLS	freq [MHz]			
5	21	453			
6	29	405			
7	37	455			
8	56	355			
9	59	414			
10	83	321			
11	87	411			
12	123	276			



Galois field multiplier Architectures Results

Implementation in hardware Core unit - Galois field multiplier (4/4)

Version 2:

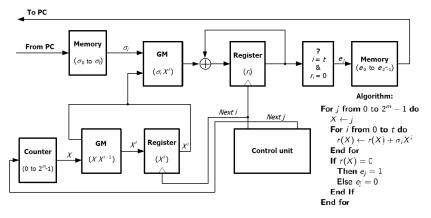
- Implementation results
- Hardware: Altera Cyclone III FPGA (EP3C25)
- With variable Q_m

m	LCELLS	freq [MHz]
5	35	348
6	54	275
7	68	207
8	90	175
9	117	172
10	140	135
11	178	140
12	209	118

Galois field multiplier Architectures Results

Implementation in hardware Architecture of error vector computation (Right to Left [R2L])

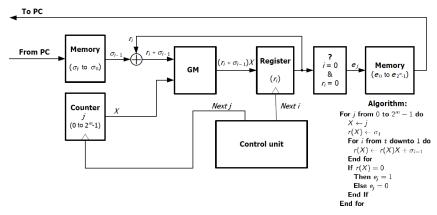
Expression: $\sigma(X) = \sigma_t X^t + \sigma_{t-1} X^{t-1} + \ldots + \sigma_1 X + \sigma_0$



Galois field multiplier Architectures Results

Implementation in hardware Architecture of error vector computation (Left to Right [L2R])

Expression: $\sigma(X) = (((\sigma_t X + \sigma_{t-1})X + \ldots)X + \sigma_1)X + \sigma_0$



Galois field multiplier Architectures Results

Implementation in hardware Error vector computation - implementation results

- Hardware: Altera Cyclone III FPGA (EP3C25)
- With fixed Q_m (version 1)
- Implementation results [R2L]

m	t	LCELLs	M9K	freq [MHz]	Total[µs]
6	5	296	1+2	135	2.84
7	10	317	1+2	130	10.83
11	50	447	1+2	123	849.17

• Implementation results [L2R]

m	t	LCELLs	M9K	freq [MHz]	Total[µs]
6	5	279	1+2	125	3.07
7	10	295	1+2	123	11.48
11	50	378	1+2	117	892.72

Conclusion

- Goppa codes are one of the most used family (of codes) in code-based cryptography.
- Implemented a part of the algorithm, which is the most expensive, vulnerable and necessary in all Goppa decoding algorithms.
- Implementation results of both versions ([R2L] and [L2R]) are very similar.
- However, power traces will be certainly very different.

Go to a secure implementation of a Goppa decoder.

Future works

- Will it be possible to attack both implementations?
 - No: Which is more robust and why?
 - Yes: We can implement both methods in parallel and select randomly the datapath.
- Determine which is the best Goppa decoder between:
 - Patterson algorithm,
 - Berlekamp-Massey algorithm,
 - Extended Euclidean algorithm.
- Implementation of the complete Goppa decoder in hardware.
- Implementation of the complete McEliece cryptosystem in hardware.
- Evaluations of side-channel attacks and countermeasures.

Towards a secure implementation of a Goppa decoder (Work in progress)

Thank you for your attention.

Questions ?