Towards a secure implementation of a Goppa
decoder
(Work in progress)

Tania RICHMOND
with Pierre-Louis CAYREL, Viktor FISCHER
and Pascal VERON

June 25th, 2013
ﬁ‘sgg
CUriEn és"""{‘e"a&

1/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

@ Motivation
@ Error-correcting codes
@ Code-based cryptography
@ Goppa codes

© Patterson algorithm
@ General
@ Input/output
@ Algorithm step by step

© Implementation in hardware
@ Galois field multiplier
@ Architectures
@ Results

@ Conclusion

2/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Motivation Error-correcting codes

Code-based cryptography
Goppa codes

Error-correcting codes

Original application: Correct errors after data transmission
(if possible).
How? Adding some redundant information.

Messages: {0,1} Codewords: {000,111}
1—+111 — 110 =+ 111 — 1

We use linear codes so the redundancy is linearly dependant of the
information.

3/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Motivation n
Error-correcting codes

Code-based cryptography
Goppa codes

Code-based cryptography

New application of error-correcting codes:

@ Fast computations,
@ No quantum algorithm with polynomial complexity to break

the mathematical hard problem (to date).

Principle: uses syndrome decoding as a trapdoor one-way function
Syndrome decoding problem:

Question:
Known: e
Does there exist = — s
H a r x n-matrix; a vector e of [
S a vector of length r; length n and v H =
and t an integer < n. weight t such
that: ?
4/27

Tania RICHMOND Towards a secure implementation of a Goppa decoder

Motivation

Error-correcting codes
Code-based cryptography
Goppa codes

Goppa codes used as trapdoor

Goppa decoder can be used both for encryption and signature.

@ The McEliece public-key encryption scheme;

@ The CFS signature scheme.

Advantages of Goppa codes:
@ Like random codes in several (most) cases,
@ Dense family of codes,

o Have an efficient decoding algorithm.

5/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm

@ Used in code-based cryptography;
@ For binary Goppa codes decoding;
@ Proposed by N. J. Patterson in 1975.

Advantages

Fast computations for binary codes and ability to correct more
errors.

6/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm
McEliece cryptosystem

McEliece Public-Key Cryptosystem:

Public key: Choose a code, with its generator matrix, for which
we have a decoding algorithm.

Private key: Transform this generator matrix to obtain an
equivalent generator matrix which seems random.

Encode the message and add a random error of weight t.

Decode the ciphertext and come back to the original codeword.

7/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm
Input/output

Inputs:
y = ¢ @ e a codeword with errors,
(L, g(X)) the Goppa code, with
L= {011,012, ... ,an} C Fom and
g a polynomial of degree t.
Output:
¢ a codeword (without errors).

All operations are in finite fields.

8/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm

Algorithm overview

o
2]
o

00

Compute the syndrome polynomial.
Invert the syndrome polynomial modulo g(X).

Compute the square root of the syndrome polynomial inverse
plus X modulo g(X).

Determine the even and odd parts of the error locator
polynomial (ELP).

Determine the ELP.

Evaluate the ELP to find its roots.

Correct the codeword with the error vector.

9/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Patterson algorithm

Patterson algorithm
Step 0 (precomputation)

Square root of X mod g(X)

R(X) =

VX
_ X2m—1

General
Input/output
Algorithm step by step

mod g(X)
mod g(X)

because for all X € Fom, X verifies X2" = X, so X2 = x1/2,

Tania RICHMOND

Towards a secure implementation of a Goppa decoder

10/27

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm
Step 1

Syndrome polynomial

Compute S = H'y summing several columns of H.

[Eitesiieieres

[munaunam 1

Then we obtain the Syndrome polynomial S(X).

Example (from S to S(X))

We can see the vector S = (s;—1,5t-2,-..,51,%)
as the polynomial S(X) = s 1 X1 + 5, o X2+ ...+ 55X + 5.

11/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm
Step 2

Syndrome inversion

Compute
T(X) =S71X) mod g(X)

by extended Euclidean algorithm.

12/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm

Step 3

Square root of Syndrome inverse plus X, modulo g(X)
Compute
7(X) = /T(X)+ X mod g(X).
Setting h(X) = T(X) + X, we use the following formula:
(t-1)/2 1 t/2—1 1
T(X)= Y h X'+ X KL XR(X)
i=0

i=0

where R(X) = VX mod g(X).

Tania RICHMOND Towards a secure implementation of a Goppa decoder

13/27

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm
Step 4

Even and odd parts of the Error Locator Polynomial (ELP)
Compute a(X) and b(X) such that

a(X) = b(X)7(X) mod g(X)

by extended Euclidean algorithm.

14/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm

Step 5

ELP building

Construct o(X) such that:

o(X) = a?(X) + Xb?(X)

Example (if ¢ is odd)

a(X) =004 02X + ...+ o1 X(E1/2
b(X) =01 + 03X + ...+ o X1/
o(X)=o0p+o1X+...+ o1 X1 4 o XE

Tania RICHMOND Towards a secure implementation of a Goppa decoder

15/27

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm

Step 6

Finding roots of the ELP

Test all elements in L to find the roots of o.
The roots of o correspond to the nonzero coordinates of the error

vector.

Example (Horner algorithm)

O'(X) = OtXt—FUt,lXt_l—l—...—l—UlX—FUo
= (((oetX +0ot—1)X +..)X +01)X + 00

for all X in L.

16/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

General
Input/output
Algorithm step by step

Patterson algorithm

Patterson algorithm
Step 7

Error vector reconstruction

Change all corresponding coordinates in y.
(Thanks to the error vector found in the previous step.)

17/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Galois field multiplier
Architectures

Implementation in hardware
P © Results

Implementation in hardware
Core unit - Galois field multiplier (GM) (1/4)

Steps 5 and 6 of Patterson algorithm in hardware:

Description: Inputs: Two elements of Fom represented
Multiplication of two elements | by two ponnomiaIs of degree m — 1

a and (3 of a finite field
Fan = F5[X]/ Qum(X). Zax’ and (X Z@X’
The product denoted r by

Galois Multiplier (GM) is in Fom. where a,,ﬁ, {01
Parameters: Qm(X) = Z q;i X'

m the degree of the polynomial 3 polynomlal of degree m on I,

Qm(X) = Z giX’ (version 2)
Output: Product of the inputs seen as a

polynomial of degree m — 1
m—1

r(X) = Z riX'

i=0

a polynomlal of degree m on F»
(version 1)

18/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Implementation in hardware

Implementation in hardware

Galois field multiplier
Architectures
Results

Core unit - Galois field multiplier (2/4)

We can represent all polynomials as vectors, | Example: m =5
as follows: Qn(X)=x*+x*+x>+x+1
1 ax) = x* + x> + x and
o = Za,-X’ B(X):X4+X
i=0
= a=(am-1,..-,a0). Soxt X X2 o x 1
Qm 1 0 1 1 1 1
GM: o 0 1 10
r(X) < B(X) 8 1 0 0 10
For i from m — 1 downto 1 do ’ i 0 0 1 0
r(X) « + aji—18(X) + rm—1Qm(X) (i=4)
End for 0 0 0 0 O
Return r 1 0 1 1 1 1
r 0 0 1 0 1 1
(i=3)
19/27

Tania RICHMOND

Towards a secure implementation of a Goppa decoder

Galois field multiplier
Architectures

Implementation in hardware
P © Results

Implementation in hardware
Core unit - Galois field multiplier (3/4)

Version 1:
@ Implementation results
o Hardware: Altera Cyclone IIl FPGA (EP3C25)

o With fixed Q,
- m LCELLs freq[MHz]

5 21 453 w50
6 29 405 0 A

7 37 455 -

8 56 355 250 =@=LCELLs

9 59 414 200 freq [MHe]
10 83 321

11 87 411 s0 .—""/._—./‘—-/.

12 123 276 ¢ 5 6 7 8 a 10 1 12

20/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Galois field multiplier
Architectures

Implementation in hardware
P © Results

Implementation in hardware
Core unit - Galois field multiplier (4/4)

Version 2:
@ Implementation results
o Hardware: Altera Cyclone IIl FPGA (EP3C25)

o With variable Qn,
- m LCELLs freq[MHz]

5 35 348
6 54 275 00
350
7 63 207 .
8 90 175 250 == CELLS
9 117 172 -
10 140 135 jj /
11 178 140 w /
12 209 118 ° 5 3 7 8 9 10 1 12

21/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Galois field multiplier
Architectures

Implementation in hardware
P © Results

Implementation in hardware
Architecture of error vector computation (Right to Left [R2L])

Expression: o(X) = 0: Xt +0r 1 X 4 ...+ 01X + 00

To PC
From PC Memory o R
> > ' i ?
(coto o) M Register | =t e Memory
(o X7) T)] & (eo to &)
o 7 r=0
Algorithm:
; For j from 0 to 2" — 1 do
Next i .
Next j X
. For j from O to t do
| GM x' |Register 1% r(X) & H(X) +a;X!
Counter X y > Control unit End for
. > (XX) If r(X)=¢
(0t02%1) Thene =1
Else ¢ =0
End If
End for

22/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Galois field multiplier
Architectures

Implementation in hardware
P © Results

Implementation in hardware
Architecture of error vector computation (Left to Right [L2R])

Expression: o(X) = (((6eX + 0¢—1)X + ..)X +01)X + 00

To PC
<

From PC Memory Y
q

/% I+ 61
P - (17 + 07 1) X | Register
(o to ov) GM /

A
U

0 | e Memory
(eoto e271)

Counter Next j Next i Algorithm:
J X For j from 0 to 2" — 1 do
(0to2™-1) X —j
r(X) ¢ ae
For i from t downto 1 do
r(X) ¢ r(X)X + oi—1
End for
IfFr(X)=0
Theng =1
Else & = Q
End If
End for

Control unit

23/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Galois field multiplier
Architectures
Results

Implementation in hardware

Implementation in hardware

Error vector computation - implementation results

o Hardware: Altera Cyclone IIl FPGA (EP3C25)

e With fixed Qp, (version 1)

@ Implementation results [R2L]
----——

296 1+2 135
7 10 317 1+2 130 10.83

11 50 447 1+2 123 849.17

@ Implementation results [L2R]

'm t ICELls M9K freq[MHz] Totallus]
6 5 279 1+2 125 3.07
7 10 295 1+2 123 1148

11 50 378 1+2 117 892.72

24/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Conclusion

Conclusion

@ Goppa codes are one of the most used family (of codes) in
code-based cryptography.

@ Implemented a part of the algorithm, which is the most
expensive, vulnerable and necessary in all Goppa decoding
algorithms.

@ Implementation results of both versions ([R2L] and [L2R]) are
very similar.

@ However, power traces will be certainly very different.

Go to a secure implementation of a Goppa decoder.

25/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Conclusion

Future works

Will it be possible to attack both implementations?
No: Which is more robust and why?
Yes: We can implement both methods in parallel and select
randomly the datapath.
Determine which is the best Goppa decoder between:
© Patterson algorithm,
@ Berlekamp-Massey algorithm,
© Extended Euclidean algorithm.

Implementation of the complete Goppa decoder in hardware.

Implementation of the complete McEliece cryptosystem in
hardware.

@ Evaluations of side-channel attacks and countermeasures.

26/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

Conclusion

Towards a secure implementation of a Goppa decoder
(Work in progress)

Thank you for your attention.

Sits
LAB .AQ’ e
(K\Jean
CUMIEr =8 AL L

——— SAINT-ETIENNE

Questions ?

27/27
Tania RICHMOND Towards a secure implementation of a Goppa decoder

	Motivation
	Error-correcting codes
	Code-based cryptography
	Goppa codes

	Patterson algorithm
	General
	Input/output
	Algorithm step by step

	Implementation in hardware
	Galois field multiplier
	Architectures
	Results

	Conclusion

