

Laser-Induced Fault Simulation

Feng LU, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre

Introduction

Background: Secure Circuit & Fault Attacks

Secure Circuits

Fault Attacks to retrieve secret data (laser-induced fault attacks)

Introduction

Background: Laser Fault Injection

Evaluation by real attacks:
Expensive
Long Setup time
Evaluation by Simulation:
At Design Time
Faster
Inexpensive

Countermeasure Evaluation

Outline

Laser Parameters

Process of Multi-level Fault Simulation

Experimental Results

Electrical Model of Laser-induced transient fault

 $I_{laser} = I_o(e^{-t/ta} - e^{-t/tb})$

[1] A. Sarafianos, R. Llido, J.M. Dutertre, O. Gagliano, V. Serradeil, M. Lisart, V.Goubier, A. Tria, V. Pouget, D. Lewis. "Building the electrical model of the Photoelectric Laser Stimulation of a PMOS transistor in 90 nm technology". Microelectronics Reliability 52 (2012) 2035–2038 6

Location of Laser Covered Sub-Circuit

Process of Multi-level Fault Simulation

tLIFTING: Mixed–Mode and Multi-Level Fault Simulator

Experimental Results - Execution Time

tLifting vs Spice

	Circuit info	ormation	Fault simulation [s]		
circuit	Size	Vectors	Multi-Level	Hspice	Factor
c432	112	77	0.116	55.78	480x
c499	133	77	0.132	89.05	674x
c1355	162	72	0.132	86.48	655x
c1908	169	80	0.228	129.12	566x
c880	204	77	0.404	119.22	295x
c2670	292	136	2.052	393.78	191x
c3540	476	171	1.916	676.7	353x
c5315	608	113	4.204	705.05	167x
c7552	705	167	9.428	1356.56	143x
c6288	1286	63	8.308	1248.75	150x
b01	31	13	0.03	6	200x
b04	41	16	0.04	5.03	125x
b10	89	128	0.09	25.97	288x

Experimental Results - Hspice Range

• • •

Level 1

Level 4

Experimental Results - Experimental Setup

Test circuit

Experimental Results - Fault pulse

Experimental Results – Accuracy of combinational logic

Experimental Results - Accuracy Analysis

310uA to	Level1	Level2	Level3	Level4	Level5
500uA	Те	Те	Te	Te	Те
Average [ps]	134,87	146,15	112,17	72,67	34,52
Standard deviation	49,55	2,09	1,10	1,53	1,08

Conclusion:

- 1. Level 1 is NOT proposed.
- 2. For Level 2 and above, Te does not change with the width of the fault pulse.
- 3. Te to be estimated.

Predicting simulation level Measurements of standard cells

Different test pulses => T'e = Average of Te

Example: T'e of this buffer is 37ps

Predicting simulation level (1) Te estimation

310uA to	Level1	Level2	Level3	Level4	Level5
500uA	Те	Те	Те	Те	Те
Average [ps]	134,87	146,15	112,17	72,67	34,52
Estimated	/	1/18/00	111.00	74.00	37.00
values [ps]	/	140,00	111,00	74,00	37,00

Predicting simulation level (2) te1 & te2 estimation

te1 and te2 independent of fault pulse width

310uA to	Leve	el 1	Leve	el 2	Leve	el 3	Leve	e l 4	Leve	el 5
500uA	te1	te2	te1	te2	te1	te2	te1	te2	te1	te2
Average [ps]	64,12	70,75	98,15	48,00	75,77	36,40	49,27	23,40	24,15	10,37
Estimated values [ps]	/	/	98,00	50,00	73,50	37,50	49,00	25,00	24,50	12,50

Estimation => Choice of Simulation Level

Predicting simulation level (3)

Predicting simulation level (4)

Pe(t) is Error Probability with the fault pulse which is injected at moment t.

tLIFTING	Hspice	Pe(t)
0	0	0
1	1	0
x	0	0.5
х	1	0.5
1	0	1
0	1	1

	Current (mA)	Number of experiment Pe(t) = 0.5	Number of experiment Pe(t) = 1	Sum of Pe(t)
ιs	320	149	8	83,5
	350	147	10	83,5
	400	150	7	82
	430	149	9	83,5
	460	148	8	82,5
	500	147	9	83,5
	Average		8,5	83,08

5000 experiments

Level 2

Predicting simulation level (5) Accuracy Calculation (1)

The probability for the difference of latched values of two simulators:

$$P = \frac{1}{T_{clk}} \int_{0}^{T_{clk}} P_e(t) dt$$

Predicting simulation level (6) Accuracy Calculation (2)

Predicting simulation level (7) calculation step

- The WIw of the flip-flop are WIw1 = 110ps, WIw2 = 40ps. (These values are defined in SDF file).
- For level 2 simulation, estimated te are te1 = 98ps, te2 = 50ps.
- 3. $te_1 \le W | w_1 => P_1 = 1.1\%$ $te_2 > W | w_2 => P_2 = 0.6\%$
- 4. Credibility of latched/non-latched SET fault: Pc = $1 - \sum Pi = 98.3\%$

Experimental Results

Simulation	Number of	Accuracy	Accuracy	Accuracy*	Accuracy*
level	experiments	(experimental)	(estimated)	(experimental)	(estimated)
2	30000	98,34%	98,3%	99,83%	99,8%
3	30000	98,5%	98,5%	100%	100%
4	30000	98,5%	98,5%	100%	100%
5	30000	98,5%	98,5%	100%	100%

* The unknown state "X" is NOT considered as an error.

=> adequate simulation level a priori determined

Execution Time Vs. Accuracy

Conclusion

Multi-fault Simulator

User-defined precision

Flexibility

THANK YOU

30

On going work

Circuit Layout

