Implementation of Quality-of-Security-Service in communication structure for 3D-MPSoCS Protection

> M. Johanna Sepúlveda Guy Gogniat, Marius Strum jsepulveda@lme.usp.br

LAB-STICC, UNIVERSITÉ BRETAGNE SUD, FRANCE GSEIS, UNIVERSITY OF SÃO PAULO, BRAZIL

2013

Lab-STICC

SUMMARY

- 1. Introduction
- 2. 3D-MPSoCs
- 3. HoCs: 3D Communication structure
- 4. Our Work
 - Goal 1: Mechanisms to support QoSS.
 - Goal 2: Evaluation of HoC performance.
- 5. Results
- 6. Conclusions

MOTIVATION

- To integrate more functionality into smaller devices.
- To increase performance, reduce costs.

MOTIVATION

Cost effective:

- * General purpose SoC (MPSoCs).
- Integrate different applications on the same chip.

Applications: Communication requirements and design constraints.

MULTI-APPLICATION SYSTEM

Problem

Software attacks!

Security incidents: 80% via **software**.

Problem

Explore the SoC vulnerabilities.

Problem

Infection: Takes advantage of the trusty component's rights!!

Computation structure

Notation: L(S1)/(S2/n) 3(3x3)/(9/32)

Communication structure

HoCs: 3D-MPSoC Communication Structure

HoCs: Hybrid-On-Chip CS

- Short connections.
- Low capacity.
- High frequency.
- Defects.
- Area consumers.

HoCs: Bus

- Low cost CS with predictable latency.
- Not scalable.
- Number of interlayer links (performance/cost-reliability)
 - Higher: Improve performance of the system.
 - Lower: Prone to defects.

HoCs: NoCs

Horizontal interconnection

NoC Routers

HoCs: NoCs

Network Protocol

Source

- * Accesses routing tables.
- * Assembles packets.
- * Splits into flits.

Destination

- * Synchronizes.
- * Drops routing information.

M/S

Communication

1. Efficiency

- CS is the bottleneck of the 3D-MPSoC.
- Several works adress the design of 3D-CS.

BEST EFFORT ARCHITECTURES! WITHOUT SECURITY

2. Security

3D-MPSoC characteristics

- Multi-application
 - Different
 - Functional/Communication requirements.
 - Security requirements (multi security-policies).
- Dynamicity
 - Applications may change (dynamic security requirements).
 - New applications may have
 - Tighter communication requirements.
 - Stronger/weaker security requirements.

Heterogeneity

- Components with different performance.
- From different providers (are they trusty?).
- Obserbability
 - Track of critical information (i.e. state of IPs for tasks migration).

Dynamic security requirements

•The security policy of the 3D-SoC can change as a consequence of three factors:

• *New application* is mapped on the 3D-SoC.

• Current application is reallocated on the 3D-SoC (i.e. Task migration).

•New 3D-SoC operation scenario.

Islands: IPs or clusters of IPs.

3D-HoC services

• Just an extension of 2D?

3D presents new challenges

- All get worst: multi-application, dynamicity, heterogeneity.
- Increase of faults (TSVs and thermal effects).
- 3D presents new opportunities:
 - Promote design strategies (prohibitive in performance at 2D-SoC)
 - Huge amount of task migration.
 - Layers specialization.
 - Cluster-style design (clusters linked through a 3D-HoC).
 - Huge set of configuration parameters
 - Computation structure
 - Communication structure

Security Opportunities

• **COMPUTATION STRUCTURE:**

- High level of integration: More IPs integrated to the 3D-MPSoC can be dedicated to security.
 - Cryptoprocessors
 - Security IPs.

COMMUNICATION STRUCTURE:

- 3D-MPSoCs are foreseen as communication-centric systems.
- All software attacks start with an abnormal communication.
- Main role of the CS in the system operation can be used for detect an attack.

OUR WORK

Goal:

 To integrate security mechanisms to the HoC in order to provide different levels of security (3D-QoCS), evaluate its efficiency and efficacy.

Communication structure

All software attack begins with an abnormal communication.

- Monitor information exchange.
- •Detect attacks.

Diagnosis — Trigger recovery mechanisms.

Security Implementation

1. Application specfic security layer

- Application specific security functionality
- Isolation
- Passive monitoring
- Layers can be fabricated at different foundries and integrated in a third trusty foundry.

2. Split security at all the layers

Islands: IPs or clusters of IPs.

2. Split security at all the layers

Characteristics:

We implement two security services at the 3D-HoC:

- i) *authentication*: verifying the source integrity.
- ii) access control: certifying the authorized use of the system.
- Different security choices (L0- L3):
 - Special configuration of the security mechanism.
 - Higher security may imply in higher costs.
 - Selection of a security level:
 - Security requirements of the system.
 - Resources availability and cost.

3D-SoC designer may select a lower protection level in order to fulfill the performance requirements (trade-off).

Access Control

- Place of implementation: Interface, router.
- Security levels.
- Control information: Source, type, role.

FILTER:

- HoC firewall : Allows or blocks a transaction.
- According to security policy.

Interface:

* Before packet injection to the CS.* Packet reception.

Access control				
	SV	TV	PV	
Level 0				
Level 1	X			
Level 2	X	Х		
Level 3	X	Х	Х	

SV: Source verification. TV: Type verification. RV: Role verification.

Authentication

- Implementation place: Interface, router.
- No cryptographic mechanisms.
- Levels of security.

ANALIZER:

Number of routers through the communication path. Routers ID. Communication code.

Authentication				
	NR	RP	CC	
Level 0				
Level 1	Х			
Level 2	Х	Х		
Level 3	Х	Х	Х	

NR: Router number. RP: Set Routers ID. CC: Communication code.

2. Split security at all the layers

- Firewalls in the 3D-HoC interfaces: Allow or block a transaction according to the matching or mismatch between the content of the packet and the security policy.
- Firewalls store the security policy information in a security table.
- 3D-HoCs integrates two types of interfaces:
 - Computation-Communication (CC).
 - NoC-Bus (NB).

SECURITY MECHANISMS							
Service	Mechanism	CC	NB	LO	L1	<i>L2</i>	<i>L3</i>
	Destination	Island	Memory	х	х		х
AC	Operation	read, read-linked, write and broadcast	read, read- exclusive, write.		x	x	x
Siz De rol	Size	No checking	Checking		х	х	х
	Deadline/ role	cycles/root-user	cycles/root -user			x	x
	Source	Island	Island	х	х		х
AU	Path	No checking	Checking		х	х	х
	ID Code	Checking	Checking			х	х

CC: rules the intra-layer communication (same layer).

NB: rules the inter-layer communication (different layers).

2. Architecture

Policy keeper:

- It stores the information of the 3D-SoC task mapping and the security policy.
- The security policy set the protection level (from L0 to L3) of each service.
- The size of the table stored by the policy keeper component depends on the number of applications, tasks and IPs integrated at the 3D-MPSoC.

Reconfiguration manager:

Coordinates the upgrading of the security table of all the firewalls.

Security mechanisms:

- Defends the 3D-MPSoC against possible attacks.
- Uses the information embodied in the packets.
- Able to be upgraded.

Monitor:

- Audits the communication behavior of the 3D-SoC.
- Determine the completion of the transaction.
- Embodied at the routers of the 3D-HoC.

2. Functionality

1. Analysis the security policy

- Identify the firewalls that must be configured (target firewall).
- Which, where, new data.

2. Configuration of security mechanisms

- Block injection od new data whose destination is linked to the target firewall.
- Send new data (local and global configuration).

3. Recovery

- Unblock communication.
- Resume operation.

Evaluation

HoC simulation and evaluation framework. Supports different traffic conditions.

Experimental Setup

CS: 2D-NoC (application specific layer) HoCs (security in all the layers)

HoC Configuration

- Stacked, single, ciliated and 3D-HoC 3(5x5)/25/32)
- XYZ routing algorithm
- 75 IP cores 3D-MPSoC
- Round-Robin
- Simple/QoS arbiter
- FIFO memory organization

Simulation Conditions

- •5 flits Payload.
- 900.000 simulated cycles.

Experimental Setup

•3 characteristics of the traffic: Nature, topology and type.

- Topology
 - Hot-spot
 - Transpose
 - Uniform

•Real application (3 Applications, different security policies)

Nature

• Poisson + % LRD .

•Type of traffic

- Best effort
- Priority (L M H)
- Guarantee

•Dynamicity (0, 20, 40, 50, 60, 80)

Results

Efficiency:

* 3 different kind of attacks (Modification, extraction, *DoS*).

SECURITY EFFICACY				
Attack scenario	2D-NoC	3D-HoC		
Write critical data	97%	97%		
Read critical data	100%	100%		
Malicious task migration	100%	100%		
Nonexisting target /Repeated data	89%	89%		
Communication target = source	100%	100%		

- They show identical security efficacy (percentage of detected attacks).
- It was expected because the values of the security values at both alternatives were the same.
- The difference is the implementation (centralized, spread).
- 97% of efficacy mean that the security designer should increase the protection level in order to achieve a 100% of protection.

Results

Efficacy:

Latency results for CS L3 AC and AU security level and different dynamicity.

- 3D-HoC achieves a better performance when compared to 2DNoC.
- 3D-HoC is less sensible to the dynamicity of the system.

i) 3D technology characteristics (smaller initiator/destination paths).

ii) At the reconfiguration phase, only some small areas of 3D-HoC where blocked.

Results

Efficacy:

3D-HoC latency results for different levels of protection.

There is a trade-off security/performance to be explored!

Conclusions and future work

•We propose a dynamic security enhanced 3D-HoC for 3D-SoC protection.

•We show that 3D-HoC can be an efficient structure to guarantee the protection in the system.

•3D technology not only presents new challenges, but new opportunities to achieve a secure and efficient system.

•Three techniques are employed in order to achieve an efficient configuration:

- Only some firewalls are upgraded, so the communication in the remaining of the system is not interrupted
- Security customization
- Intrinsic low latency of 3D technology.

Conclusions and future work

•We compare our distributed architecture with a centralized one. As dynamicity increases, the distributed alternative becomes more efficient.

•As future work we plan to implement integrity and confidentiality security services.